{"title":"类固醇和自身免疫","authors":"Amelia Chiara Trombetta, Marianna Meroni, Maurizio Cutolo","doi":"10.1159/000452911","DOIUrl":null,"url":null,"abstract":"<p><p>From the middle of the 19th century, it is known that endocrine and immune systems interact bi-directionally in different processes that ensure organism homeostasis. Endocrine and nervous systems have a pivotal role in the balancing of pro- and anti-inflammatory functions of immune system, and constitute a complex circadian neuroendocrine network. Autoimmune diseases have in fact a complex pathogenic origin in which the importance of endocrine system was demonstrated. In this chapter, we will mention the structure and function of steroidal hormones involved in the neuroendocrine immune network and we will address the ways in which endocrine and immune systems influence each other, in a bi-directional fashion. Adrenal hormones, sex hormones, vitamin D, and melatonin and prolactin importantly all contribute to the homeostasis of the immune system. Indeed, some of the steroidal hormone activities determine inhibition or stimulation of immune system components, in both physiological (i.e. suppression of an unwanted response in pregnancy, or stimulation of a protective response in infections) and pathological conditions. We will finally mention the rationale for optimization of exogenous administration of glucocorticoids in chronic autoimmune diseases, and the latest developments concerning these drugs.</p>","PeriodicalId":50428,"journal":{"name":"Frontiers of Hormone Research","volume":"48 ","pages":"121-132"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000452911","citationCount":"25","resultStr":"{\"title\":\"Steroids and Autoimmunity.\",\"authors\":\"Amelia Chiara Trombetta, Marianna Meroni, Maurizio Cutolo\",\"doi\":\"10.1159/000452911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>From the middle of the 19th century, it is known that endocrine and immune systems interact bi-directionally in different processes that ensure organism homeostasis. Endocrine and nervous systems have a pivotal role in the balancing of pro- and anti-inflammatory functions of immune system, and constitute a complex circadian neuroendocrine network. Autoimmune diseases have in fact a complex pathogenic origin in which the importance of endocrine system was demonstrated. In this chapter, we will mention the structure and function of steroidal hormones involved in the neuroendocrine immune network and we will address the ways in which endocrine and immune systems influence each other, in a bi-directional fashion. Adrenal hormones, sex hormones, vitamin D, and melatonin and prolactin importantly all contribute to the homeostasis of the immune system. Indeed, some of the steroidal hormone activities determine inhibition or stimulation of immune system components, in both physiological (i.e. suppression of an unwanted response in pregnancy, or stimulation of a protective response in infections) and pathological conditions. We will finally mention the rationale for optimization of exogenous administration of glucocorticoids in chronic autoimmune diseases, and the latest developments concerning these drugs.</p>\",\"PeriodicalId\":50428,\"journal\":{\"name\":\"Frontiers of Hormone Research\",\"volume\":\"48 \",\"pages\":\"121-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000452911\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Hormone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000452911\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Hormone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000452911","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
From the middle of the 19th century, it is known that endocrine and immune systems interact bi-directionally in different processes that ensure organism homeostasis. Endocrine and nervous systems have a pivotal role in the balancing of pro- and anti-inflammatory functions of immune system, and constitute a complex circadian neuroendocrine network. Autoimmune diseases have in fact a complex pathogenic origin in which the importance of endocrine system was demonstrated. In this chapter, we will mention the structure and function of steroidal hormones involved in the neuroendocrine immune network and we will address the ways in which endocrine and immune systems influence each other, in a bi-directional fashion. Adrenal hormones, sex hormones, vitamin D, and melatonin and prolactin importantly all contribute to the homeostasis of the immune system. Indeed, some of the steroidal hormone activities determine inhibition or stimulation of immune system components, in both physiological (i.e. suppression of an unwanted response in pregnancy, or stimulation of a protective response in infections) and pathological conditions. We will finally mention the rationale for optimization of exogenous administration of glucocorticoids in chronic autoimmune diseases, and the latest developments concerning these drugs.
期刊介绍:
A series of integrated overviews on cutting-edge topics
New sophisticated technologies and methodological approaches in diagnostics and therapeutics have led to significant improvements in identifying and characterizing an increasing number of medical conditions, which is particularly true for all aspects of endocrine and metabolic dysfunctions. Novel insights in endocrine physiology and pathophysiology allow for new perspectives in clinical management and thus lead to the development of molecular, personalized treatments. In view of this, the active interplay between basic scientists and clinicians has become fundamental, both to provide patients with the most appropriate care and to advance future research.