{"title":"自体骨髓抽吸联合人甲状旁腺激素1-34治疗家兔骨坏死模型的可行性及疗效。","authors":"Takeshi Makihara, Tomokazu Yoshioka, Hisashi Sugaya, Katsuya Aoto, Hiroshi Wada, Kenta Uemura, Kenta Tanaka, Hiroshi Akaogi, Masashi Yamazaki, Hajime Mishima","doi":"10.1155/2017/2484689","DOIUrl":null,"url":null,"abstract":"<p><p>No studies have examined the transplantation of a bone marrow aspirate (BMA) containing mesenchymal stem cells (MSCs) combined with human parathyroid hormone 1-34 (hPTH1-34) administration. Therefore, we evaluated the feasibility and efficacy of autologous BMA transplantation combined with hPHT1-34 administration in a bone necrosis model. The metatarsal bones of rabbits were necrotized using liquid nitrogen, and the rabbits received a BMA transplantation or saline injection followed by hPTH1-34 (30 <i>μ</i>g/kg) or saline administration three times per week (<i>n</i> = 3-4 per group). The rabbits were euthanized at 12 weeks after the initiation of treatment. No systemic adverse effects or local neoplastic lesions were observed. Importantly, the rabbits in the BMA transplantation plus hPTH1-34 group showed the highest bone volumes and histological scores of new bone. These data confirmed the feasibility of BMA transplantation combined with hPTH1-34, at least during the experimental period. The observed efficacy may be explained by a synergistic effect from the stimulation of MSC differentiation to osteoblasts with hPTH1-34-mediated suppression of apoptosis in osteoblasts. These results indicate the promising potential for BMA transplantation combined with hPTH1-34 administration in bone necrosis treatment. Longer term experiments are needed to confirm the safety of this therapeutic strategy.</p>","PeriodicalId":9220,"journal":{"name":"Bone Marrow Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/2484689","citationCount":"3","resultStr":"{\"title\":\"Feasibility and Efficacy of Autologous Bone Marrow Aspirate Transplantation Combined with Human Parathyroid Hormone 1-34 Administration to Treat Osteonecrosis in a Rabbit Model.\",\"authors\":\"Takeshi Makihara, Tomokazu Yoshioka, Hisashi Sugaya, Katsuya Aoto, Hiroshi Wada, Kenta Uemura, Kenta Tanaka, Hiroshi Akaogi, Masashi Yamazaki, Hajime Mishima\",\"doi\":\"10.1155/2017/2484689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>No studies have examined the transplantation of a bone marrow aspirate (BMA) containing mesenchymal stem cells (MSCs) combined with human parathyroid hormone 1-34 (hPTH1-34) administration. Therefore, we evaluated the feasibility and efficacy of autologous BMA transplantation combined with hPHT1-34 administration in a bone necrosis model. The metatarsal bones of rabbits were necrotized using liquid nitrogen, and the rabbits received a BMA transplantation or saline injection followed by hPTH1-34 (30 <i>μ</i>g/kg) or saline administration three times per week (<i>n</i> = 3-4 per group). The rabbits were euthanized at 12 weeks after the initiation of treatment. No systemic adverse effects or local neoplastic lesions were observed. Importantly, the rabbits in the BMA transplantation plus hPTH1-34 group showed the highest bone volumes and histological scores of new bone. These data confirmed the feasibility of BMA transplantation combined with hPTH1-34, at least during the experimental period. The observed efficacy may be explained by a synergistic effect from the stimulation of MSC differentiation to osteoblasts with hPTH1-34-mediated suppression of apoptosis in osteoblasts. These results indicate the promising potential for BMA transplantation combined with hPTH1-34 administration in bone necrosis treatment. Longer term experiments are needed to confirm the safety of this therapeutic strategy.</p>\",\"PeriodicalId\":9220,\"journal\":{\"name\":\"Bone Marrow Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/2484689\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Marrow Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/2484689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Marrow Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/2484689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility and Efficacy of Autologous Bone Marrow Aspirate Transplantation Combined with Human Parathyroid Hormone 1-34 Administration to Treat Osteonecrosis in a Rabbit Model.
No studies have examined the transplantation of a bone marrow aspirate (BMA) containing mesenchymal stem cells (MSCs) combined with human parathyroid hormone 1-34 (hPTH1-34) administration. Therefore, we evaluated the feasibility and efficacy of autologous BMA transplantation combined with hPHT1-34 administration in a bone necrosis model. The metatarsal bones of rabbits were necrotized using liquid nitrogen, and the rabbits received a BMA transplantation or saline injection followed by hPTH1-34 (30 μg/kg) or saline administration three times per week (n = 3-4 per group). The rabbits were euthanized at 12 weeks after the initiation of treatment. No systemic adverse effects or local neoplastic lesions were observed. Importantly, the rabbits in the BMA transplantation plus hPTH1-34 group showed the highest bone volumes and histological scores of new bone. These data confirmed the feasibility of BMA transplantation combined with hPTH1-34, at least during the experimental period. The observed efficacy may be explained by a synergistic effect from the stimulation of MSC differentiation to osteoblasts with hPTH1-34-mediated suppression of apoptosis in osteoblasts. These results indicate the promising potential for BMA transplantation combined with hPTH1-34 administration in bone necrosis treatment. Longer term experiments are needed to confirm the safety of this therapeutic strategy.