成人脊髓神经发生:伤害感觉的调节因子。

Neurogenesis (Austin, Tex.) Pub Date : 2016-11-14 eCollection Date: 2016-01-01 DOI:10.1080/23262133.2016.1256853
Gabriel Rusanescu
{"title":"成人脊髓神经发生:伤害感觉的调节因子。","authors":"Gabriel Rusanescu","doi":"10.1080/23262133.2016.1256853","DOIUrl":null,"url":null,"abstract":"<p><p>Adult spinal cord neurogenesis occurs at low, constant rate under normal conditions and can be amplified by pathologic conditions such as injury or disease. The immature neurons produced through adult neurogenesis have increased excitability and migrate preferentially to the superficial dorsal horn layers responsible for nociceptive signaling. Under normal conditions, this process may be responsible for maintaining a steady-state, but adaptable level of nociceptive sensitivity, thus representing an experience-dependent mechanism of regulation similar to other neurogenic niches. Under pathologic conditions, adult spinal cord neurogenesis is greatly amplified and may therefore account for the observed changes in general spinal cord excitability and nociceptive sensitivity. This mechanism also explains many types of chronic pain present in the absence of injury or disease, which may be the result of impaired neuronal differentiation due to a variety of genetic variations. This suggests the possibility of using promoters of neuronal differentiation for the long-term treatment of the causes of chronic pain, unlike current medication which is palliative and effective only for the duration of treatment. The presence of this spinal cord neurogenic niche may also lead to new approaches in spinal cord regeneration.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1256853","citationCount":"11","resultStr":"{\"title\":\"Adult spinal cord neurogenesis: A regulator of nociception.\",\"authors\":\"Gabriel Rusanescu\",\"doi\":\"10.1080/23262133.2016.1256853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adult spinal cord neurogenesis occurs at low, constant rate under normal conditions and can be amplified by pathologic conditions such as injury or disease. The immature neurons produced through adult neurogenesis have increased excitability and migrate preferentially to the superficial dorsal horn layers responsible for nociceptive signaling. Under normal conditions, this process may be responsible for maintaining a steady-state, but adaptable level of nociceptive sensitivity, thus representing an experience-dependent mechanism of regulation similar to other neurogenic niches. Under pathologic conditions, adult spinal cord neurogenesis is greatly amplified and may therefore account for the observed changes in general spinal cord excitability and nociceptive sensitivity. This mechanism also explains many types of chronic pain present in the absence of injury or disease, which may be the result of impaired neuronal differentiation due to a variety of genetic variations. This suggests the possibility of using promoters of neuronal differentiation for the long-term treatment of the causes of chronic pain, unlike current medication which is palliative and effective only for the duration of treatment. The presence of this spinal cord neurogenic niche may also lead to new approaches in spinal cord regeneration.</p>\",\"PeriodicalId\":74274,\"journal\":{\"name\":\"Neurogenesis (Austin, Tex.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23262133.2016.1256853\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenesis (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23262133.2016.1256853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2016.1256853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

成人脊髓神经发生在正常情况下以低、恒定的速率发生,并可因损伤或疾病等病理条件而放大。通过成年神经发生产生的未成熟神经元的兴奋性增加,并优先迁移到负责伤害信号的浅表背角层。在正常情况下,这一过程可能负责维持一种稳定状态,但可适应的伤害性敏感性水平,因此代表了一种类似于其他神经源性生态位的经验依赖调节机制。在病理条件下,成人脊髓神经发生被大大放大,因此可以解释观察到的一般脊髓兴奋性和伤害敏感性的变化。这一机制也解释了在没有损伤或疾病的情况下存在的许多类型的慢性疼痛,这可能是由于各种遗传变异导致的神经元分化受损的结果。这表明使用神经元分化促进剂长期治疗慢性疼痛的可能性,不像目前的药物是姑息性的,只在治疗期间有效。这种脊髓神经源性生态位的存在也可能导致脊髓再生的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adult spinal cord neurogenesis: A regulator of nociception.

Adult spinal cord neurogenesis occurs at low, constant rate under normal conditions and can be amplified by pathologic conditions such as injury or disease. The immature neurons produced through adult neurogenesis have increased excitability and migrate preferentially to the superficial dorsal horn layers responsible for nociceptive signaling. Under normal conditions, this process may be responsible for maintaining a steady-state, but adaptable level of nociceptive sensitivity, thus representing an experience-dependent mechanism of regulation similar to other neurogenic niches. Under pathologic conditions, adult spinal cord neurogenesis is greatly amplified and may therefore account for the observed changes in general spinal cord excitability and nociceptive sensitivity. This mechanism also explains many types of chronic pain present in the absence of injury or disease, which may be the result of impaired neuronal differentiation due to a variety of genetic variations. This suggests the possibility of using promoters of neuronal differentiation for the long-term treatment of the causes of chronic pain, unlike current medication which is palliative and effective only for the duration of treatment. The presence of this spinal cord neurogenic niche may also lead to new approaches in spinal cord regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of neoblasts in the patterned postembryonic growth of the platyhelminth Macrostomum lignano. There's no place like home - HGF-c-MET signaling and melanocyte migration into the mammalian cochlea Effects of Isx-9 and stress on adult hippocampal neurogenesis: Experimental considerations and future perspectives. Opportunities lost and gained: Changes in progenitor competence during nervous system development. Endogenous Brain Repair: Overriding intrinsic lineage determinates through injury-induced micro-environmental signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1