{"title":"“良好的合作是基于双方独特的贡献”:评估干细胞科学合作的动态。","authors":"Michael Morrison","doi":"10.1186/s40504-017-0053-y","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of 'big biology' is bringing academic and industrial scientists together in large consortia to address translational challenges in the life sciences. In order to assess the impact of this change, this paper examines the existing norms and styles of collaboration in one high profile translational domain; stem cell research. Data is drawn from qualitative interviews with academic and industry scientists working in a large European stem cell research project. Respondents discussed what they perceived as the main benefits and risks of collaborative research, what styles of collaboration they were familiar with, and what collaborative work in stem cell science normally involves. A wide range of materials, data, and expertise can be exchanged during collaborative work. Informal collaborations are governed by an ethos of reciprocity and mediated by trust while formal project agreements can provide a safe space for sharing between unfamiliar partners. These characteristics make stem cell research well suited to pre-competitive public-private ventures but translation of new products to market may be more challenging.</p>","PeriodicalId":37861,"journal":{"name":"Life Sciences, Society and Policy","volume":"13 1","pages":"7"},"PeriodicalIF":3.1000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40504-017-0053-y","citationCount":"15","resultStr":"{\"title\":\"\\\"A good collaboration is based on unique contributions from each side\\\": assessing the dynamics of collaboration in stem cell science.\",\"authors\":\"Michael Morrison\",\"doi\":\"10.1186/s40504-017-0053-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of 'big biology' is bringing academic and industrial scientists together in large consortia to address translational challenges in the life sciences. In order to assess the impact of this change, this paper examines the existing norms and styles of collaboration in one high profile translational domain; stem cell research. Data is drawn from qualitative interviews with academic and industry scientists working in a large European stem cell research project. Respondents discussed what they perceived as the main benefits and risks of collaborative research, what styles of collaboration they were familiar with, and what collaborative work in stem cell science normally involves. A wide range of materials, data, and expertise can be exchanged during collaborative work. Informal collaborations are governed by an ethos of reciprocity and mediated by trust while formal project agreements can provide a safe space for sharing between unfamiliar partners. These characteristics make stem cell research well suited to pre-competitive public-private ventures but translation of new products to market may be more challenging.</p>\",\"PeriodicalId\":37861,\"journal\":{\"name\":\"Life Sciences, Society and Policy\",\"volume\":\"13 1\",\"pages\":\"7\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40504-017-0053-y\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Sciences, Society and Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40504-017-0053-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences, Society and Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40504-017-0053-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
"A good collaboration is based on unique contributions from each side": assessing the dynamics of collaboration in stem cell science.
The rise of 'big biology' is bringing academic and industrial scientists together in large consortia to address translational challenges in the life sciences. In order to assess the impact of this change, this paper examines the existing norms and styles of collaboration in one high profile translational domain; stem cell research. Data is drawn from qualitative interviews with academic and industry scientists working in a large European stem cell research project. Respondents discussed what they perceived as the main benefits and risks of collaborative research, what styles of collaboration they were familiar with, and what collaborative work in stem cell science normally involves. A wide range of materials, data, and expertise can be exchanged during collaborative work. Informal collaborations are governed by an ethos of reciprocity and mediated by trust while formal project agreements can provide a safe space for sharing between unfamiliar partners. These characteristics make stem cell research well suited to pre-competitive public-private ventures but translation of new products to market may be more challenging.
期刊介绍:
The purpose of Life Sciences, Society and Policy (LSSP) is to analyse social, ethical and legal dimensions of the most dynamic branches of life sciences and technologies, and to discuss ways to foster responsible innovation, sustainable development and user-driven social policies. LSSP provides an academic forum for engaged scholarship at the intersection of life sciences, philosophy, bioethics, science studies and policy research, and covers a broad area of inquiry both in emerging research areas such as genomics, bioinformatics, biophysics, molecular engineering, nanotechnology and synthetic biology, and in more applied fields such as translational medicine, food science, environmental science, climate studies, research on animals, sustainability, science education and others. The goal is to produce insights, tools and recommendations that are relevant not only for academic researchers and teachers, but also for civil society, policy makers and industry, as well as for professionals in education, health care and the media, thus contributing to better research practices, better policies, and a more sustainable global society.