利用大规模观察性医疗保健数据库建立多种罕见结果的层次模型。

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Statistical Analysis and Data Mining Pub Date : 2016-08-01 Epub Date: 2016-07-17 DOI:10.1002/sam.11324
Trevor R Shaddox, Patrick B Ryan, Martijn J Schuemie, David Madigan, Marc A Suchard
{"title":"利用大规模观察性医疗保健数据库建立多种罕见结果的层次模型。","authors":"Trevor R Shaddox, Patrick B Ryan, Martijn J Schuemie, David Madigan, Marc A Suchard","doi":"10.1002/sam.11324","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical trials often lack power to identify rare adverse drug events (ADEs) and therefore cannot address the threat rare ADEs pose, motivating the need for new ADE detection techniques. Emerging national patient claims and electronic health record databases have inspired post-approval early detection methods like the Bayesian self-controlled case series (BSCCS) regression model. Existing BSCCS models do not account for multiple outcomes, where pathology may be shared across different ADEs. We integrate a pathology hierarchy into the BSCCS model by developing a novel informative hierarchical prior linking outcome-specific effects. Considering shared pathology drastically increases the dimensionality of the already massive models in this field. We develop an efficient method for coping with the dimensionality expansion by reducing the hierarchical model to a form amenable to existing tools. Through a synthetic study we demonstrate decreased bias in risk estimates for drugs when using conditions with different true risk and unequal prevalence. We also examine observational data from the MarketScan Lab Results dataset, exposing the bias that results from aggregating outcomes, as previously employed to estimate risk trends of warfarin and dabigatran for intracranial hemorrhage and gastrointestinal bleeding. We further investigate the limits of our approach by using extremely rare conditions. This research demonstrates that analyzing multiple outcomes simultaneously is feasible at scale and beneficial.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"9 4","pages":"260-268"},"PeriodicalIF":2.1000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423675/pdf/nihms799155.pdf","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Models for Multiple, Rare Outcomes Using Massive Observational Healthcare Databases.\",\"authors\":\"Trevor R Shaddox, Patrick B Ryan, Martijn J Schuemie, David Madigan, Marc A Suchard\",\"doi\":\"10.1002/sam.11324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical trials often lack power to identify rare adverse drug events (ADEs) and therefore cannot address the threat rare ADEs pose, motivating the need for new ADE detection techniques. Emerging national patient claims and electronic health record databases have inspired post-approval early detection methods like the Bayesian self-controlled case series (BSCCS) regression model. Existing BSCCS models do not account for multiple outcomes, where pathology may be shared across different ADEs. We integrate a pathology hierarchy into the BSCCS model by developing a novel informative hierarchical prior linking outcome-specific effects. Considering shared pathology drastically increases the dimensionality of the already massive models in this field. We develop an efficient method for coping with the dimensionality expansion by reducing the hierarchical model to a form amenable to existing tools. Through a synthetic study we demonstrate decreased bias in risk estimates for drugs when using conditions with different true risk and unequal prevalence. We also examine observational data from the MarketScan Lab Results dataset, exposing the bias that results from aggregating outcomes, as previously employed to estimate risk trends of warfarin and dabigatran for intracranial hemorrhage and gastrointestinal bleeding. We further investigate the limits of our approach by using extremely rare conditions. This research demonstrates that analyzing multiple outcomes simultaneously is feasible at scale and beneficial.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"9 4\",\"pages\":\"260-268\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423675/pdf/nihms799155.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11324\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11324","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

临床试验往往缺乏识别罕见药物不良事件(ADE)的能力,因此无法应对罕见药物不良事件造成的威胁,因此需要新的药物不良事件检测技术。新出现的全国患者索赔和电子健康记录数据库启发了贝叶斯自控病例系列(BSCCS)回归模型等批准后早期检测方法。现有的 BSCCS 模型并不考虑多重结果,不同的 ADE 可能共享病理。我们通过开发一种将特定结果效应联系在一起的新型信息分层先验,将病理学分层整合到 BSCCS 模型中。考虑到共享病理学会大大增加该领域本已庞大的模型的维度。我们开发了一种有效的方法,通过将分层模型简化为现有工具可以使用的形式,来应对维度的扩展。通过一项合成研究,我们证明了在使用具有不同真实风险和不平等流行率的条件时,药物风险估计值的偏差会减小。我们还研究了来自 MarketScan 实验室结果数据集的观察数据,揭示了汇总结果所产生的偏差,正如之前用于估算华法林和达比加群治疗颅内出血和消化道出血的风险趋势那样。我们通过使用极其罕见的病症进一步研究了我们方法的局限性。这项研究表明,同时分析多种结果是可行的,而且是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Models for Multiple, Rare Outcomes Using Massive Observational Healthcare Databases.

Clinical trials often lack power to identify rare adverse drug events (ADEs) and therefore cannot address the threat rare ADEs pose, motivating the need for new ADE detection techniques. Emerging national patient claims and electronic health record databases have inspired post-approval early detection methods like the Bayesian self-controlled case series (BSCCS) regression model. Existing BSCCS models do not account for multiple outcomes, where pathology may be shared across different ADEs. We integrate a pathology hierarchy into the BSCCS model by developing a novel informative hierarchical prior linking outcome-specific effects. Considering shared pathology drastically increases the dimensionality of the already massive models in this field. We develop an efficient method for coping with the dimensionality expansion by reducing the hierarchical model to a form amenable to existing tools. Through a synthetic study we demonstrate decreased bias in risk estimates for drugs when using conditions with different true risk and unequal prevalence. We also examine observational data from the MarketScan Lab Results dataset, exposing the bias that results from aggregating outcomes, as previously employed to estimate risk trends of warfarin and dabigatran for intracranial hemorrhage and gastrointestinal bleeding. We further investigate the limits of our approach by using extremely rare conditions. This research demonstrates that analyzing multiple outcomes simultaneously is feasible at scale and beneficial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
期刊最新文献
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain A new logarithmic multiplicative distortion for correlation analysis Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification A random forest approach for interval selection in functional regression Characterizing climate pathways using feature importance on echo state networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1