纤毛相关蛋白的核作用。

Q2 Biochemistry, Genetics and Molecular Biology Cilia Pub Date : 2017-05-25 eCollection Date: 2017-01-01 DOI:10.1186/s13630-017-0052-x
Tristan D McClure-Begley, Michael W Klymkowsky
{"title":"纤毛相关蛋白的核作用。","authors":"Tristan D McClure-Begley,&nbsp;Michael W Klymkowsky","doi":"10.1186/s13630-017-0052-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.</p>","PeriodicalId":38134,"journal":{"name":"Cilia","volume":" ","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13630-017-0052-x","citationCount":"20","resultStr":"{\"title\":\"Nuclear roles for cilia-associated proteins.\",\"authors\":\"Tristan D McClure-Begley,&nbsp;Michael W Klymkowsky\",\"doi\":\"10.1186/s13630-017-0052-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.</p>\",\"PeriodicalId\":38134,\"journal\":{\"name\":\"Cilia\",\"volume\":\" \",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13630-017-0052-x\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cilia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13630-017-0052-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cilia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13630-017-0052-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 20

摘要

纤毛似乎是从祖先(前纤毛)真核生物中存在的结构进化而来的,例如基于微管的囊泡运输和染色体分离系统。实验观察表明,纤毛门是介导细胞质和纤毛室之间选择性分子运动的分子复合物,与核孔具有相同的特征。我们的假设是,这种共享的运输机制至少部分地负责观察到一些纤毛和纤毛发生相关蛋白在细胞核内被发现,它们在基因表达、DNA修复和核进出口的调节中发挥作用。在考虑纤毛蛋白突变修饰引起的表型效应时,认识到这种核作用的潜力是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclear roles for cilia-associated proteins.

Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cilia
Cilia Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
SF-Assemblin genes in Paramecium: phylogeny and phenotypes of RNAi silencing on the ciliary-striated rootlets and surface organization New software for automated cilia detection in cells (ACDC) Glioma cell proliferation is enhanced in the presence of tumor-derived cilia vesicles. Amyloid-β interrupts canonical Sonic hedgehog signaling by distorting primary cilia structure. Evidence of primary cilia in the developing rat heart.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1