{"title":"造血干细胞在发育、体内平衡和疾病中的外在调节。","authors":"Yeojin Lee, Matthew Decker, Heather Lee, Lei Ding","doi":"10.1002/wdev.279","DOIUrl":null,"url":null,"abstract":"<p><p>Lifelong generation of blood and immune cells depends on hematopoietic stem cells (HSCs). Their function is precisely regulated by complex molecular networks that integrate and respond to ever changing physiological demands of the body. Over the past several years, significant advances have been made in understanding the extrinsic regulation of HSCs during development and in homeostasis. Propelled by technical advances in the field, the cellular and molecular components of the microenvironment that support HSCs in vivo are emerging. In addition, the interaction of HSCs with their niches is appreciated as a critical contributor to the pathogenesis of a number of hematologic disorders. Here, we review these advances in detail and highlight the extrinsic regulation of HSCs in the context of development, homeostasis, and diseases. WIREs Dev Biol 2017, 6:e279. doi: 10.1002/wdev.279 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"6 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.279","citationCount":"18","resultStr":"{\"title\":\"Extrinsic regulation of hematopoietic stem cells in development, homeostasis and diseases.\",\"authors\":\"Yeojin Lee, Matthew Decker, Heather Lee, Lei Ding\",\"doi\":\"10.1002/wdev.279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lifelong generation of blood and immune cells depends on hematopoietic stem cells (HSCs). Their function is precisely regulated by complex molecular networks that integrate and respond to ever changing physiological demands of the body. Over the past several years, significant advances have been made in understanding the extrinsic regulation of HSCs during development and in homeostasis. Propelled by technical advances in the field, the cellular and molecular components of the microenvironment that support HSCs in vivo are emerging. In addition, the interaction of HSCs with their niches is appreciated as a critical contributor to the pathogenesis of a number of hematologic disorders. Here, we review these advances in detail and highlight the extrinsic regulation of HSCs in the context of development, homeostasis, and diseases. WIREs Dev Biol 2017, 6:e279. doi: 10.1002/wdev.279 For further resources related to this article, please visit the WIREs website.</p>\",\"PeriodicalId\":23630,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"volume\":\"6 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wdev.279\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wdev.279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Extrinsic regulation of hematopoietic stem cells in development, homeostasis and diseases.
Lifelong generation of blood and immune cells depends on hematopoietic stem cells (HSCs). Their function is precisely regulated by complex molecular networks that integrate and respond to ever changing physiological demands of the body. Over the past several years, significant advances have been made in understanding the extrinsic regulation of HSCs during development and in homeostasis. Propelled by technical advances in the field, the cellular and molecular components of the microenvironment that support HSCs in vivo are emerging. In addition, the interaction of HSCs with their niches is appreciated as a critical contributor to the pathogenesis of a number of hematologic disorders. Here, we review these advances in detail and highlight the extrinsic regulation of HSCs in the context of development, homeostasis, and diseases. WIREs Dev Biol 2017, 6:e279. doi: 10.1002/wdev.279 For further resources related to this article, please visit the WIREs website.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.