量化非编码变异对转录因子- dna结合的影响。

Jingkang Zhao, Dongshunyi Li, Jungkyun Seo, Andrew S Allen, Raluca Gordân
{"title":"量化非编码变异对转录因子- dna结合的影响。","authors":"Jingkang Zhao,&nbsp;Dongshunyi Li,&nbsp;Jungkyun Seo,&nbsp;Andrew S Allen,&nbsp;Raluca Gordân","doi":"10.1007/978-3-319-56970-3_21","DOIUrl":null,"url":null,"abstract":"<p><p>Many recent studies have emphasized the importance of genetic variants and mutations in cancer and other complex human diseases. The overwhelming majority of these variants occur in non-coding portions of the genome, where they can have a functional impact by disrupting regulatory interactions between transcription factors (TFs) and DNA. Here, we present a method for assessing the impact of non-coding mutations on TF-DNA interactions, based on regression models of DNA-binding specificity trained on high-throughput <i>in vitro</i> data. We use ordinary least squares (OLS) to estimate the parameters of the binding model for each TF, and we show that our predictions of TF-binding changes due to DNA mutations correlate well with measured changes in gene expression. In addition, by leveraging distributional results associated with OLS estimation, for each predicted change in TF binding we also compute a normalized score (<i>z</i>-score) and a significance value (<i>p</i>-value) reflecting our confidence that the mutation affects TF binding. We use this approach to analyze a large set of pathogenic non-coding variants, and we show that these variants lead to significant differences in TF binding between alleles, compared to a control set of common variants. Thus, our results indicate that there is a strong regulatory component to the pathogenic non-coding variants identified thus far.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"10229 ","pages":"336-352"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_21","citationCount":"17","resultStr":"{\"title\":\"Quantifying the Impact of Non-coding Variants on Transcription Factor-DNA Binding.\",\"authors\":\"Jingkang Zhao,&nbsp;Dongshunyi Li,&nbsp;Jungkyun Seo,&nbsp;Andrew S Allen,&nbsp;Raluca Gordân\",\"doi\":\"10.1007/978-3-319-56970-3_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many recent studies have emphasized the importance of genetic variants and mutations in cancer and other complex human diseases. The overwhelming majority of these variants occur in non-coding portions of the genome, where they can have a functional impact by disrupting regulatory interactions between transcription factors (TFs) and DNA. Here, we present a method for assessing the impact of non-coding mutations on TF-DNA interactions, based on regression models of DNA-binding specificity trained on high-throughput <i>in vitro</i> data. We use ordinary least squares (OLS) to estimate the parameters of the binding model for each TF, and we show that our predictions of TF-binding changes due to DNA mutations correlate well with measured changes in gene expression. In addition, by leveraging distributional results associated with OLS estimation, for each predicted change in TF binding we also compute a normalized score (<i>z</i>-score) and a significance value (<i>p</i>-value) reflecting our confidence that the mutation affects TF binding. We use this approach to analyze a large set of pathogenic non-coding variants, and we show that these variants lead to significant differences in TF binding between alleles, compared to a control set of common variants. Thus, our results indicate that there is a strong regulatory component to the pathogenic non-coding variants identified thus far.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"10229 \",\"pages\":\"336-352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_21\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-56970-3_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-56970-3_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

最近的许多研究都强调了基因变异和突变在癌症和其他复杂人类疾病中的重要性。这些变异绝大多数发生在基因组的非编码部分,在那里它们可以通过破坏转录因子(TFs)和DNA之间的调节相互作用而产生功能影响。在这里,我们提出了一种评估非编码突变对TF-DNA相互作用影响的方法,该方法基于高通量体外数据训练的dna结合特异性回归模型。我们使用普通最小二乘(OLS)来估计每个TF结合模型的参数,并表明我们对DNA突变引起的TF结合变化的预测与测量到的基因表达变化具有良好的相关性。此外,通过利用与OLS估计相关的分布结果,对于每个预测的TF结合变化,我们还计算了一个标准化得分(z-score)和一个显著性值(p-value),反映了我们对突变影响TF结合的信心。我们使用这种方法分析了一大组致病的非编码变异体,结果表明,与一组普通变异体相比,这些变异体导致等位基因之间的TF结合存在显著差异。因此,我们的研究结果表明,迄今为止鉴定出的致病性非编码变异有很强的调控成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying the Impact of Non-coding Variants on Transcription Factor-DNA Binding.

Many recent studies have emphasized the importance of genetic variants and mutations in cancer and other complex human diseases. The overwhelming majority of these variants occur in non-coding portions of the genome, where they can have a functional impact by disrupting regulatory interactions between transcription factors (TFs) and DNA. Here, we present a method for assessing the impact of non-coding mutations on TF-DNA interactions, based on regression models of DNA-binding specificity trained on high-throughput in vitro data. We use ordinary least squares (OLS) to estimate the parameters of the binding model for each TF, and we show that our predictions of TF-binding changes due to DNA mutations correlate well with measured changes in gene expression. In addition, by leveraging distributional results associated with OLS estimation, for each predicted change in TF binding we also compute a normalized score (z-score) and a significance value (p-value) reflecting our confidence that the mutation affects TF binding. We use this approach to analyze a large set of pathogenic non-coding variants, and we show that these variants lead to significant differences in TF binding between alleles, compared to a control set of common variants. Thus, our results indicate that there is a strong regulatory component to the pathogenic non-coding variants identified thus far.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1