通过优化不同病毒载体上的miRNA表达盒来改善miRNA的传递。

Q1 Immunology and Microbiology Human Gene Therapy Methods Pub Date : 2017-08-01 DOI:10.1089/hgtb.2017.036
Elena Herrera-Carrillo, Ying Poi Liu, Ben Berkhout
{"title":"通过优化不同病毒载体上的miRNA表达盒来改善miRNA的传递。","authors":"Elena Herrera-Carrillo,&nbsp;Ying Poi Liu,&nbsp;Ben Berkhout","doi":"10.1089/hgtb.2017.036","DOIUrl":null,"url":null,"abstract":"<p><p>The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"28 4","pages":"177-190"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2017.036","citationCount":"53","resultStr":"{\"title\":\"Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors.\",\"authors\":\"Elena Herrera-Carrillo,&nbsp;Ying Poi Liu,&nbsp;Ben Berkhout\",\"doi\":\"10.1089/hgtb.2017.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery.</p>\",\"PeriodicalId\":13126,\"journal\":{\"name\":\"Human Gene Therapy Methods\",\"volume\":\"28 4\",\"pages\":\"177-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/hgtb.2017.036\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Gene Therapy Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/hgtb.2017.036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2017.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 53

摘要

RNA干扰途径是一种进化保守的转录后基因调控机制,仅由双链RNA诱导剂触发。基于RNA的方法和技术促进了许多基础科学发现的发现,并刺激了新型RNA疗法的发展。通过转染合成的小干扰rna瞬间诱导RNAi可以触发目标mRNA的选择性敲低。为了实现基因表达的持久沉默,开发了人工短发夹RNA或编码转基因构建物的microRNA。这些mirna是基于在哺乳动物和人类中诱导天然RNAi通路的分子:内源性表达的mirna。为了解决基本的生物学问题或设计新的治疗策略,miRNA卡带的构建和传递是研究的重点。已经开发了几种病毒载体,它们特别适用于将miRNA表达盒递送到特定的靶细胞。每个向量系统都有自己独特的一组不同的性质。因此,根据具体的应用,一个特定的向量可能是最合适的。这一领域之前对不同的病毒载体系统进行了回顾,现在报道了基于mirna的慢病毒载体基因沉默方法的最新进展。重点是独特的性质和各自的限制,可用的载体系统的miRNA递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors.

The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Gene Therapy Methods
Human Gene Therapy Methods BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases. The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.
期刊最新文献
Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations. Fast-Seq: A Simple Method for Rapid and Inexpensive Validation of Packaged Single-Stranded Adeno-Associated Viral Genomes in Academic Settings. LINC00958 Accelerates Cell Proliferation and Migration in Non-Small Cell Lung Cancer Through JNK/c-JUN Signaling. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. LINC00958 accelerates cell proliferation and migration in non-small cell lung cancer through JNK/c-JUN signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1