铅(II)在核酸中的作用。

Joana Palou-Mir, Miquel Barceló-Oliver, Roland K O Sigel
{"title":"铅(II)在核酸中的作用。","authors":"Joana Palou-Mir,&nbsp;Miquel Barceló-Oliver,&nbsp;Roland K O Sigel","doi":"10.1515/9783110434330-012","DOIUrl":null,"url":null,"abstract":"<p><p>Although lead(II) is naturally not associated with nucleic acids, this metal ions has been applied with DNA and RNA in various contexts. Pb2+ is an excellent hydrolytic metal ion for nucleic acids, which is why it is mainly used as probing agent for secondary structure and to determine metal ion binding sites both in vitro and in vivo. A further application of lead(II) is in structural studies, i.e., NMR, but also in X-ray crystallography, mostly using this heavy metal to solve the phase problem in the latter method. The structures of tRNAPhe, RNase P, HIV-1 DIS, and the leadzyme are discussed here in detail. A major part of this review is devoted to the cleavage properties of lead(II) with RNA because of its excellence in catalyzing phosphodiester cleavage. Metal ion binding sites in large naturally occurring ribozymes are regularly determined by Pb2+ cleavage, and also in the in vitro selected socalled leadzyme, this metal ion is the decisive key to backbone cleavage at a specific site. Lead(II) was used in the first in vitro selection that yielded a catalytic DNA, i.e., the DNAzyme named GR5. Next to the GR5, the so-called 8-17E is the second most prominent DNAzyme today. Derivatives of these two lead(II)-dependent DNAzymes, as well as the G-quadruplex forming PS2.M have been applied to detect lead(II) in the lower nanomolar range not only in the test tube but also in body fluids. Due to the toxicity of lead(II) for living beings, this is a highly active research field. Finally, further applications of lead(II)-dependent DNAzymes, e.g., in the construction of nanocomputers, are also discussed.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"17 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/9783110434330-012","citationCount":"4","resultStr":"{\"title\":\"The Role of Lead(II) in Nucleic Acids.\",\"authors\":\"Joana Palou-Mir,&nbsp;Miquel Barceló-Oliver,&nbsp;Roland K O Sigel\",\"doi\":\"10.1515/9783110434330-012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although lead(II) is naturally not associated with nucleic acids, this metal ions has been applied with DNA and RNA in various contexts. Pb2+ is an excellent hydrolytic metal ion for nucleic acids, which is why it is mainly used as probing agent for secondary structure and to determine metal ion binding sites both in vitro and in vivo. A further application of lead(II) is in structural studies, i.e., NMR, but also in X-ray crystallography, mostly using this heavy metal to solve the phase problem in the latter method. The structures of tRNAPhe, RNase P, HIV-1 DIS, and the leadzyme are discussed here in detail. A major part of this review is devoted to the cleavage properties of lead(II) with RNA because of its excellence in catalyzing phosphodiester cleavage. Metal ion binding sites in large naturally occurring ribozymes are regularly determined by Pb2+ cleavage, and also in the in vitro selected socalled leadzyme, this metal ion is the decisive key to backbone cleavage at a specific site. Lead(II) was used in the first in vitro selection that yielded a catalytic DNA, i.e., the DNAzyme named GR5. Next to the GR5, the so-called 8-17E is the second most prominent DNAzyme today. Derivatives of these two lead(II)-dependent DNAzymes, as well as the G-quadruplex forming PS2.M have been applied to detect lead(II) in the lower nanomolar range not only in the test tube but also in body fluids. Due to the toxicity of lead(II) for living beings, this is a highly active research field. Finally, further applications of lead(II)-dependent DNAzymes, e.g., in the construction of nanocomputers, are also discussed.</p>\",\"PeriodicalId\":18698,\"journal\":{\"name\":\"Metal ions in life sciences\",\"volume\":\"17 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/9783110434330-012\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal ions in life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110434330-012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal ions in life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110434330-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

虽然铅(II)自然不与核酸相关,但这种金属离子已在各种情况下与DNA和RNA一起应用。Pb2+是一种很好的核酸水解金属离子,因此在体外和体内主要用作二级结构探测剂和确定金属离子结合位点。铅(II)的进一步应用是在结构研究中,即核磁共振,但也在x射线晶体学中,在后者的方法中主要使用这种重金属来解决相问题。本文详细讨论了tRNAPhe、RNase P、HIV-1 DIS和铅酶的结构。由于铅(II)在催化磷酸二酯裂解方面表现优异,本文主要介绍了铅(II)与RNA的裂解特性。天然存在的大型核酶中的金属离子结合位点通常由Pb2+切割决定,并且在体外选择的所谓的铅酶中,这种金属离子是在特定位点上主链切割的决定性关键。铅(II)用于第一次体外选择,产生了催化DNA,即命名为GR5的DNAzyme。在GR5之后,所谓的8-17E是当今第二著名的DNAzyme。这两种依赖于铅(II)的DNAzymes的衍生物,以及g -四聚体形成的PS2。M已被应用于检测铅(II)在低纳摩尔范围内,不仅在试管,而且在体液。由于铅(II)对生物的毒性,这是一个非常活跃的研究领域。最后,还讨论了铅(II)依赖性DNAzymes的进一步应用,例如在纳米计算机的构建中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Lead(II) in Nucleic Acids.

Although lead(II) is naturally not associated with nucleic acids, this metal ions has been applied with DNA and RNA in various contexts. Pb2+ is an excellent hydrolytic metal ion for nucleic acids, which is why it is mainly used as probing agent for secondary structure and to determine metal ion binding sites both in vitro and in vivo. A further application of lead(II) is in structural studies, i.e., NMR, but also in X-ray crystallography, mostly using this heavy metal to solve the phase problem in the latter method. The structures of tRNAPhe, RNase P, HIV-1 DIS, and the leadzyme are discussed here in detail. A major part of this review is devoted to the cleavage properties of lead(II) with RNA because of its excellence in catalyzing phosphodiester cleavage. Metal ion binding sites in large naturally occurring ribozymes are regularly determined by Pb2+ cleavage, and also in the in vitro selected socalled leadzyme, this metal ion is the decisive key to backbone cleavage at a specific site. Lead(II) was used in the first in vitro selection that yielded a catalytic DNA, i.e., the DNAzyme named GR5. Next to the GR5, the so-called 8-17E is the second most prominent DNAzyme today. Derivatives of these two lead(II)-dependent DNAzymes, as well as the G-quadruplex forming PS2.M have been applied to detect lead(II) in the lower nanomolar range not only in the test tube but also in body fluids. Due to the toxicity of lead(II) for living beings, this is a highly active research field. Finally, further applications of lead(II)-dependent DNAzymes, e.g., in the construction of nanocomputers, are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction: Transition Metals and Sulfur. Sulfur, the Versatile Non-metal. The Type 1 Blue Copper Site: From Electron Transfer to Biological Function. Purple Mixed-Valent Copper A. The Tetranuclear Copper-Sulfide Center of Nitrous Oxide Reductase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1