发育中的婴儿大脑皮层厚度图缺失的受试者特异性估计。

Yu Meng, Gang Li, Yaozong Gao, John H Gilmore, Weili Lin, Dinggang Shen
{"title":"发育中的婴儿大脑皮层厚度图缺失的受试者特异性估计。","authors":"Yu Meng,&nbsp;Gang Li,&nbsp;Yaozong Gao,&nbsp;John H Gilmore,&nbsp;Weili Lin,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-42016-5_8","DOIUrl":null,"url":null,"abstract":"<p><p>To accurately chart the dynamic brain developmental trajectories in infants, many longitudinal neuroimaging studies prefer having a complete dataset. Unfortunately, missing data at certain time points are unavoidable in longitudinal datasets. To better use incomplete longitudinal data, we propose a novel method to estimate the subject-specific vertex-wise cortical thickness maps at missing time points, by using a customized regression forest, Dynamically-Assembled Regression Forest (DARF). DARF ensures spatial smoothness of the estimated cortical thickness maps and also the computational efficiency. The proposed method can fully exploit the available information from the subjects both with and without missing scans. Our method has been applied to estimate the missing cortical thickness maps in a longitudinal infant dataset, which includes 31 healthy subjects, with each having up to 5 scans. The experimental results indicate that our method can accurately estimate missing cortical thickness maps, with the average vertex-wise error less than 0.23 mm.</p>","PeriodicalId":91988,"journal":{"name":"\"Medical Computer Vision: Algorithms for Big Data\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)","volume":"9601 ","pages":"83-92"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-42016-5_8","citationCount":"1","resultStr":"{\"title\":\"Subject-specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains.\",\"authors\":\"Yu Meng,&nbsp;Gang Li,&nbsp;Yaozong Gao,&nbsp;John H Gilmore,&nbsp;Weili Lin,&nbsp;Dinggang Shen\",\"doi\":\"10.1007/978-3-319-42016-5_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To accurately chart the dynamic brain developmental trajectories in infants, many longitudinal neuroimaging studies prefer having a complete dataset. Unfortunately, missing data at certain time points are unavoidable in longitudinal datasets. To better use incomplete longitudinal data, we propose a novel method to estimate the subject-specific vertex-wise cortical thickness maps at missing time points, by using a customized regression forest, Dynamically-Assembled Regression Forest (DARF). DARF ensures spatial smoothness of the estimated cortical thickness maps and also the computational efficiency. The proposed method can fully exploit the available information from the subjects both with and without missing scans. Our method has been applied to estimate the missing cortical thickness maps in a longitudinal infant dataset, which includes 31 healthy subjects, with each having up to 5 scans. The experimental results indicate that our method can accurately estimate missing cortical thickness maps, with the average vertex-wise error less than 0.23 mm.</p>\",\"PeriodicalId\":91988,\"journal\":{\"name\":\"\\\"Medical Computer Vision: Algorithms for Big Data\\\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)\",\"volume\":\"9601 \",\"pages\":\"83-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-42016-5_8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\\\"Medical Computer Vision: Algorithms for Big Data\\\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-42016-5_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"\"Medical Computer Vision: Algorithms for Big Data\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-42016-5_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了准确地描绘婴儿动态的大脑发育轨迹,许多纵向神经影像学研究倾向于有一个完整的数据集。不幸的是,在纵向数据集中,某些时间点的数据缺失是不可避免的。为了更好地利用不完整的纵向数据,我们提出了一种新的方法,通过使用自定义的回归森林——动态组装回归森林(DARF)来估计缺失时间点上受试者特定顶点方向的皮质厚度图。DARF保证了估计的皮质厚度图的空间平滑性和计算效率。该方法可以充分利用被试的可用信息,无论有无缺失扫描。我们的方法已被应用于估计纵向婴儿数据集中缺失的皮质厚度图,该数据集包括31名健康受试者,每个受试者最多进行5次扫描。实验结果表明,该方法可以准确估计缺失的皮质厚度图,平均顶点误差小于0.23 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subject-specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains.

To accurately chart the dynamic brain developmental trajectories in infants, many longitudinal neuroimaging studies prefer having a complete dataset. Unfortunately, missing data at certain time points are unavoidable in longitudinal datasets. To better use incomplete longitudinal data, we propose a novel method to estimate the subject-specific vertex-wise cortical thickness maps at missing time points, by using a customized regression forest, Dynamically-Assembled Regression Forest (DARF). DARF ensures spatial smoothness of the estimated cortical thickness maps and also the computational efficiency. The proposed method can fully exploit the available information from the subjects both with and without missing scans. Our method has been applied to estimate the missing cortical thickness maps in a longitudinal infant dataset, which includes 31 healthy subjects, with each having up to 5 scans. The experimental results indicate that our method can accurately estimate missing cortical thickness maps, with the average vertex-wise error less than 0.23 mm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithms for Large-scale Network Analysis and the NetworKit Toolkit Energy-Efficient Scheduling The GENO Software Stack Skeleton-Based Clustering by Quasi-Threshold Editing Graph-Based Methods for Rational Drug Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1