脑衰老动物模型:衰老加速小鼠(SAM)

Masaomi Miyamoto, Hideki Takahashi, Hiroyuki Ohta, Junko Sakamoto
{"title":"脑衰老动物模型:衰老加速小鼠(SAM)","authors":"Masaomi Miyamoto, Hideki Takahashi, Hiroyuki Ohta, Junko Sakamoto","doi":"10.1111/j.1527-3458.1998.tb00076.x","DOIUrl":null,"url":null,"abstract":"Senescence-accelerated mouse (SAM), a murine model of accelerated senescence, was established by Takeda et al. (59) at Kyoto University. In 1968, several pairs of the AKR/J strain of mice were donated by the Jackson Laboratory (Bar Harbor, ME) to the Department of Pathology (currently the Department of Senescence Biology), Chest Disease Research Institute (currently Institute for Frontier Medical Sciences), Kyoto University, Japan. While continuing sister-brother mating to maintain the inbred strain, researchers were aware that in certain litters most of the mice showed a moderate-to-severe degree of loss of activity, hair loss, lack of glossiness, skin coarseness, periophthalmic lesions, increased lordokyphosis, and early death. In 1975, five litters of mice with severe exhaustion were selected as the progenitors of the senescence-prone series (P series). Litters in which the aging process was normal were selected as progenitors of the senescence-resistant series (R series). Thereafter, selective breeding was based on the data of the grading score of senescence (16), life span, and pathogenic phenotypes in addition to the routine sister-brother mating (56,57,59). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. At present, there are 12 lines of SAM: nine SAMP substrains, including SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10, and SAMP11; and three SAMR substrains, including SAMR1, SAMR4, and SAMR5 (56). SAM strains manifest various phenotypes that are characteristic enough to differentiate the SAM strains (Table 1): senile amyloidosis in SAMP1, SAMP2, SAMP10, and SAMP11 (14,15,60); impaired immune response in SAMP1, SAMP2 (18,19), and SAMP8 (1); contracted kidney in SAMP1,","PeriodicalId":94307,"journal":{"name":"CNS drug reviews","volume":"4 4","pages":"361-375"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1527-3458.1998.tb00076.x","citationCount":"11","resultStr":"{\"title\":\"Animal Model of Brain Aging: Senescence-Accelerated Mouse (SAM)\",\"authors\":\"Masaomi Miyamoto, Hideki Takahashi, Hiroyuki Ohta, Junko Sakamoto\",\"doi\":\"10.1111/j.1527-3458.1998.tb00076.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Senescence-accelerated mouse (SAM), a murine model of accelerated senescence, was established by Takeda et al. (59) at Kyoto University. In 1968, several pairs of the AKR/J strain of mice were donated by the Jackson Laboratory (Bar Harbor, ME) to the Department of Pathology (currently the Department of Senescence Biology), Chest Disease Research Institute (currently Institute for Frontier Medical Sciences), Kyoto University, Japan. While continuing sister-brother mating to maintain the inbred strain, researchers were aware that in certain litters most of the mice showed a moderate-to-severe degree of loss of activity, hair loss, lack of glossiness, skin coarseness, periophthalmic lesions, increased lordokyphosis, and early death. In 1975, five litters of mice with severe exhaustion were selected as the progenitors of the senescence-prone series (P series). Litters in which the aging process was normal were selected as progenitors of the senescence-resistant series (R series). Thereafter, selective breeding was based on the data of the grading score of senescence (16), life span, and pathogenic phenotypes in addition to the routine sister-brother mating (56,57,59). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. At present, there are 12 lines of SAM: nine SAMP substrains, including SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10, and SAMP11; and three SAMR substrains, including SAMR1, SAMR4, and SAMR5 (56). SAM strains manifest various phenotypes that are characteristic enough to differentiate the SAM strains (Table 1): senile amyloidosis in SAMP1, SAMP2, SAMP10, and SAMP11 (14,15,60); impaired immune response in SAMP1, SAMP2 (18,19), and SAMP8 (1); contracted kidney in SAMP1,\",\"PeriodicalId\":94307,\"journal\":{\"name\":\"CNS drug reviews\",\"volume\":\"4 4\",\"pages\":\"361-375\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/j.1527-3458.1998.tb00076.x\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS drug reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/j.1527-3458.1998.tb00076.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS drug reviews","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/j.1527-3458.1998.tb00076.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Animal Model of Brain Aging: Senescence-Accelerated Mouse (SAM)
Senescence-accelerated mouse (SAM), a murine model of accelerated senescence, was established by Takeda et al. (59) at Kyoto University. In 1968, several pairs of the AKR/J strain of mice were donated by the Jackson Laboratory (Bar Harbor, ME) to the Department of Pathology (currently the Department of Senescence Biology), Chest Disease Research Institute (currently Institute for Frontier Medical Sciences), Kyoto University, Japan. While continuing sister-brother mating to maintain the inbred strain, researchers were aware that in certain litters most of the mice showed a moderate-to-severe degree of loss of activity, hair loss, lack of glossiness, skin coarseness, periophthalmic lesions, increased lordokyphosis, and early death. In 1975, five litters of mice with severe exhaustion were selected as the progenitors of the senescence-prone series (P series). Litters in which the aging process was normal were selected as progenitors of the senescence-resistant series (R series). Thereafter, selective breeding was based on the data of the grading score of senescence (16), life span, and pathogenic phenotypes in addition to the routine sister-brother mating (56,57,59). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. At present, there are 12 lines of SAM: nine SAMP substrains, including SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10, and SAMP11; and three SAMR substrains, including SAMR1, SAMR4, and SAMR5 (56). SAM strains manifest various phenotypes that are characteristic enough to differentiate the SAM strains (Table 1): senile amyloidosis in SAMP1, SAMP2, SAMP10, and SAMP11 (14,15,60); impaired immune response in SAMP1, SAMP2 (18,19), and SAMP8 (1); contracted kidney in SAMP1,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ERRATUM Cortagine: Behavioral and Autonomic Function of the Selective CRF Receptor Subtype 1 Agonist Guanfacine and Guanfacine Extended Release: Treatment for ADHD and Related Disorders Pharmacology of the β-Carboline FG-7142, a Partial Inverse Agonist at the Benzodiazepine Allosteric Site of the GABAA Receptor: Neurochemical, Neurophysiological, and Behavioral Effects AUTHOR INDEX FOR VOLUME 13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1