揭示由阴离子囊泡引发的帕金森病蛋白α-突触核蛋白淀粉样蛋白形成途径。

IF 7.2 2区 生物学 Q1 BIOPHYSICS Quarterly Reviews of Biophysics Pub Date : 2017-01-01 DOI:10.1017/S0033583517000026
Juris Kiskis, Istvan Horvath, Pernilla Wittung-Stafshede, Sandra Rocha
{"title":"揭示由阴离子囊泡引发的帕金森病蛋白α-突触核蛋白淀粉样蛋白形成途径。","authors":"Juris Kiskis,&nbsp;Istvan Horvath,&nbsp;Pernilla Wittung-Stafshede,&nbsp;Sandra Rocha","doi":"10.1017/S0033583517000026","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid formation of the synaptic brain protein α-synuclein (αS) is related to degeneration of dopaminergic neurons in Parkinson's disease patients. αS is thought to function in vesicle transport and fusion and it binds strongly to negatively charged vesicles in vitro. Here we combined circular dichroism, fluorescence and imaging methods in vitro to characterize the interaction of αS with negatively charged vesicles of DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine, sodium salt) and DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt) and the consequences of such interactions on αS amyloid formation. We found that lipid head-group chemistry modulates αS interactions and also affects amyloid fiber formation. During the course of the experiments, we made the unexpected discovery that pre-formed αS oligomers, typically present in a small amount in the αS starting material, acted as templates for linear growth of anomalous amyloid fibers in the presence of vesicles. At the same time, the remaining αS monomers were restricted from vesicle-mediated nucleation of amyloid fibers. Although not a dominant process in bulk experiments, this hidden αS aggregation pathway may be of importance in vivo.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"50 ","pages":"e3"},"PeriodicalIF":7.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0033583517000026","citationCount":"17","resultStr":"{\"title\":\"Unraveling amyloid formation paths of Parkinson's disease protein α-synuclein triggered by anionic vesicles.\",\"authors\":\"Juris Kiskis,&nbsp;Istvan Horvath,&nbsp;Pernilla Wittung-Stafshede,&nbsp;Sandra Rocha\",\"doi\":\"10.1017/S0033583517000026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyloid formation of the synaptic brain protein α-synuclein (αS) is related to degeneration of dopaminergic neurons in Parkinson's disease patients. αS is thought to function in vesicle transport and fusion and it binds strongly to negatively charged vesicles in vitro. Here we combined circular dichroism, fluorescence and imaging methods in vitro to characterize the interaction of αS with negatively charged vesicles of DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine, sodium salt) and DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt) and the consequences of such interactions on αS amyloid formation. We found that lipid head-group chemistry modulates αS interactions and also affects amyloid fiber formation. During the course of the experiments, we made the unexpected discovery that pre-formed αS oligomers, typically present in a small amount in the αS starting material, acted as templates for linear growth of anomalous amyloid fibers in the presence of vesicles. At the same time, the remaining αS monomers were restricted from vesicle-mediated nucleation of amyloid fibers. Although not a dominant process in bulk experiments, this hidden αS aggregation pathway may be of importance in vivo.</p>\",\"PeriodicalId\":20828,\"journal\":{\"name\":\"Quarterly Reviews of Biophysics\",\"volume\":\"50 \",\"pages\":\"e3\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0033583517000026\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Reviews of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0033583517000026\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583517000026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 17

摘要

突触脑蛋白α-突触核蛋白(αS)淀粉样蛋白的形成与帕金森病患者多巴胺能神经元的变性有关。αS被认为在囊泡运输和融合中起作用,并在体外与带负电荷的囊泡结合强烈。在此,我们结合圆二色性、荧光和体外成像方法,表征了αS与带负电荷的DOPS(1,2-二油基- n-甘油基-3-磷酸- l-丝氨酸,钠盐)和DOPG(1,2-二油基- n-甘油基-3-磷酸-(1'-乙酰甘油),钠盐)囊泡的相互作用,以及这种相互作用对αS淀粉样蛋白形成的影响。我们发现脂质头基化学调节αS相互作用,也影响淀粉样纤维的形成。在实验过程中,我们意外地发现,在αS起始材料中通常少量存在的预形成αS低聚物,在存在囊泡的情况下,充当了异常淀粉样纤维线性生长的模板。同时,剩余αS单体被限制在淀粉样蛋白纤维的囊泡介导成核中。虽然在大量实验中不是显性过程,但这种隐藏的αS聚集途径在体内可能很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling amyloid formation paths of Parkinson's disease protein α-synuclein triggered by anionic vesicles.

Amyloid formation of the synaptic brain protein α-synuclein (αS) is related to degeneration of dopaminergic neurons in Parkinson's disease patients. αS is thought to function in vesicle transport and fusion and it binds strongly to negatively charged vesicles in vitro. Here we combined circular dichroism, fluorescence and imaging methods in vitro to characterize the interaction of αS with negatively charged vesicles of DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine, sodium salt) and DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt) and the consequences of such interactions on αS amyloid formation. We found that lipid head-group chemistry modulates αS interactions and also affects amyloid fiber formation. During the course of the experiments, we made the unexpected discovery that pre-formed αS oligomers, typically present in a small amount in the αS starting material, acted as templates for linear growth of anomalous amyloid fibers in the presence of vesicles. At the same time, the remaining αS monomers were restricted from vesicle-mediated nucleation of amyloid fibers. Although not a dominant process in bulk experiments, this hidden αS aggregation pathway may be of importance in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
期刊最新文献
Review of contemporary fluorescence correlation spectroscopy method in diverse solution studies. Optical scattering methods for the label-free analysis of single biomolecules. The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting. Protonation constants of endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solution: Unraveling molecular secrets. Solution-based biophysical characterization of conformation change in structure-switching aptamers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1