整合酶缺陷慢病毒载体改善骨髓来源细胞的转导。

Q1 Immunology and Microbiology Human Gene Therapy Methods Pub Date : 2018-02-01 Epub Date: 2017-12-18 DOI:10.1089/hgtb.2017.082
S Louise Pay, Xiaoping Qi, Jeffrey F Willard, Juliana Godoy, Kavya Sankhavaram, Ranier Horton, Sayak K Mitter, Judith L Quigley, Lung-Ji Chang, Maria B Grant, Michael E Boulton
{"title":"整合酶缺陷慢病毒载体改善骨髓来源细胞的转导。","authors":"S Louise Pay,&nbsp;Xiaoping Qi,&nbsp;Jeffrey F Willard,&nbsp;Juliana Godoy,&nbsp;Kavya Sankhavaram,&nbsp;Ranier Horton,&nbsp;Sayak K Mitter,&nbsp;Judith L Quigley,&nbsp;Lung-Ji Chang,&nbsp;Maria B Grant,&nbsp;Michael E Boulton","doi":"10.1089/hgtb.2017.082","DOIUrl":null,"url":null,"abstract":"<p><p>In lentiviral vector (LV) applications where transient transgene expression is sufficient, integrase-defective lentiviral vectors (IDLVs) are beneficial for reducing the potential for off-target effects associated with insertional mutagenesis. It was previously demonstrated that human RPE65 mRNA expression from an integrating lentiviral vector (ILV) induces endogenous Rpe65 and Cralbp mRNA expression in murine bone marrow-derived cells (BMDCs), initiating programming of the cells to retinal pigment epithelium (RPE)-like cells. These cells regenerate RPE in retinal degeneration models when injected systemically. As transient expression of RPE65 is sufficient to activate endogenous RPE-associated genes for programming BMDCs, use of an ILV is an unnecessary risk. In this study, an IDLV expressing RPE65 (IDLV3-RPE65) was generated. Transduction with IDLV3-RPE65 is less efficient than the integrating vector (ILV3-RPE65). Therefore, IDLV3-RPE65 transduction was enhanced with a combination of preloading 20 × -concentrated viral supernatant on RetroNectin at a multiplicity of infection of 50 and transduction of BMDCs by low-speed centrifugation. RPE65 mRNA levels increased from ∼12-fold to ∼25-fold (p < 0.05) after modification of the IDLV3-RPE65 transduction protocol, achieving expression similar to the ∼27-fold (p < 0.05) increase observed with ILV3-RPE65. Additionally, the study shows that the same preparation of RetroNectin can be used to coat up to three wells with no reduction in transduction. Critically, IDLV3-RPE65 transduction initiates endogenous Rpe65 mRNA expression in murine BMDCs and Cralbp/CRALBP mRNA in both murine and human BMDCs, similar to expression observed in ILV3-RPE65-transduced cells. Systemic administration of ILV3-RPE65 or IDLV3-RPE65 programmed BMDCs in a mouse model of retinal degeneration is sufficient to retain visual function and reduce retinal degeneration compared to mice receiving no treatment or naïve BMDC. It is concluded that IDLV3-RPE65 is appropriate for programming BMDCs to RPE-like cells.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"29 1","pages":"44-59"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2017.082","citationCount":"6","resultStr":"{\"title\":\"Improving the Transduction of Bone Marrow-Derived Cells with an Integrase-Defective Lentiviral Vector.\",\"authors\":\"S Louise Pay,&nbsp;Xiaoping Qi,&nbsp;Jeffrey F Willard,&nbsp;Juliana Godoy,&nbsp;Kavya Sankhavaram,&nbsp;Ranier Horton,&nbsp;Sayak K Mitter,&nbsp;Judith L Quigley,&nbsp;Lung-Ji Chang,&nbsp;Maria B Grant,&nbsp;Michael E Boulton\",\"doi\":\"10.1089/hgtb.2017.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In lentiviral vector (LV) applications where transient transgene expression is sufficient, integrase-defective lentiviral vectors (IDLVs) are beneficial for reducing the potential for off-target effects associated with insertional mutagenesis. It was previously demonstrated that human RPE65 mRNA expression from an integrating lentiviral vector (ILV) induces endogenous Rpe65 and Cralbp mRNA expression in murine bone marrow-derived cells (BMDCs), initiating programming of the cells to retinal pigment epithelium (RPE)-like cells. These cells regenerate RPE in retinal degeneration models when injected systemically. As transient expression of RPE65 is sufficient to activate endogenous RPE-associated genes for programming BMDCs, use of an ILV is an unnecessary risk. In this study, an IDLV expressing RPE65 (IDLV3-RPE65) was generated. Transduction with IDLV3-RPE65 is less efficient than the integrating vector (ILV3-RPE65). Therefore, IDLV3-RPE65 transduction was enhanced with a combination of preloading 20 × -concentrated viral supernatant on RetroNectin at a multiplicity of infection of 50 and transduction of BMDCs by low-speed centrifugation. RPE65 mRNA levels increased from ∼12-fold to ∼25-fold (p < 0.05) after modification of the IDLV3-RPE65 transduction protocol, achieving expression similar to the ∼27-fold (p < 0.05) increase observed with ILV3-RPE65. Additionally, the study shows that the same preparation of RetroNectin can be used to coat up to three wells with no reduction in transduction. Critically, IDLV3-RPE65 transduction initiates endogenous Rpe65 mRNA expression in murine BMDCs and Cralbp/CRALBP mRNA in both murine and human BMDCs, similar to expression observed in ILV3-RPE65-transduced cells. Systemic administration of ILV3-RPE65 or IDLV3-RPE65 programmed BMDCs in a mouse model of retinal degeneration is sufficient to retain visual function and reduce retinal degeneration compared to mice receiving no treatment or naïve BMDC. It is concluded that IDLV3-RPE65 is appropriate for programming BMDCs to RPE-like cells.</p>\",\"PeriodicalId\":13126,\"journal\":{\"name\":\"Human Gene Therapy Methods\",\"volume\":\"29 1\",\"pages\":\"44-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/hgtb.2017.082\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Gene Therapy Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/hgtb.2017.082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2017.082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 6

摘要

在瞬时转基因表达充足的慢病毒载体(LV)应用中,整合酶缺陷慢病毒载体(idlv)有助于减少插入突变相关的脱靶效应。先前的研究表明,通过整合慢病毒载体(ILV)表达人RPE65 mRNA可诱导小鼠骨髓源性细胞(bmdc)内源性RPE65和Cralbp mRNA表达,启动细胞向视网膜色素上皮(RPE)样细胞的编程。这些细胞在视网膜变性模型中全身注射后再生RPE。由于RPE65的瞬时表达足以激活内源性rpe相关基因来编程BMDCs,因此使用ILV是不必要的风险。本研究生成了表达RPE65的IDLV (IDLV3-RPE65)。与整合载体(ILV3-RPE65)相比,idv3 - rpe65的转导效率较低。因此,在50次感染时,在RetroNectin上预载20倍浓度的病毒上清液,并通过低速离心转导BMDCs,可以增强IDLV3-RPE65的转导。RPE65 mRNA水平从12倍增加到25倍(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Transduction of Bone Marrow-Derived Cells with an Integrase-Defective Lentiviral Vector.

In lentiviral vector (LV) applications where transient transgene expression is sufficient, integrase-defective lentiviral vectors (IDLVs) are beneficial for reducing the potential for off-target effects associated with insertional mutagenesis. It was previously demonstrated that human RPE65 mRNA expression from an integrating lentiviral vector (ILV) induces endogenous Rpe65 and Cralbp mRNA expression in murine bone marrow-derived cells (BMDCs), initiating programming of the cells to retinal pigment epithelium (RPE)-like cells. These cells regenerate RPE in retinal degeneration models when injected systemically. As transient expression of RPE65 is sufficient to activate endogenous RPE-associated genes for programming BMDCs, use of an ILV is an unnecessary risk. In this study, an IDLV expressing RPE65 (IDLV3-RPE65) was generated. Transduction with IDLV3-RPE65 is less efficient than the integrating vector (ILV3-RPE65). Therefore, IDLV3-RPE65 transduction was enhanced with a combination of preloading 20 × -concentrated viral supernatant on RetroNectin at a multiplicity of infection of 50 and transduction of BMDCs by low-speed centrifugation. RPE65 mRNA levels increased from ∼12-fold to ∼25-fold (p < 0.05) after modification of the IDLV3-RPE65 transduction protocol, achieving expression similar to the ∼27-fold (p < 0.05) increase observed with ILV3-RPE65. Additionally, the study shows that the same preparation of RetroNectin can be used to coat up to three wells with no reduction in transduction. Critically, IDLV3-RPE65 transduction initiates endogenous Rpe65 mRNA expression in murine BMDCs and Cralbp/CRALBP mRNA in both murine and human BMDCs, similar to expression observed in ILV3-RPE65-transduced cells. Systemic administration of ILV3-RPE65 or IDLV3-RPE65 programmed BMDCs in a mouse model of retinal degeneration is sufficient to retain visual function and reduce retinal degeneration compared to mice receiving no treatment or naïve BMDC. It is concluded that IDLV3-RPE65 is appropriate for programming BMDCs to RPE-like cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Gene Therapy Methods
Human Gene Therapy Methods BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases. The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.
期刊最新文献
Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations. Fast-Seq: A Simple Method for Rapid and Inexpensive Validation of Packaged Single-Stranded Adeno-Associated Viral Genomes in Academic Settings. LINC00958 Accelerates Cell Proliferation and Migration in Non-Small Cell Lung Cancer Through JNK/c-JUN Signaling. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. LINC00958 accelerates cell proliferation and migration in non-small cell lung cancer through JNK/c-JUN signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1