Yujie Liu, Michael R Nonnemacher, Aikaterini Alexaki, Vanessa Pirrone, Anupam Banerjee, Luna Li, Evelyn Kilareski, Brian Wigdahl
{"title":"CCAAT/增强子结合蛋白转录起始位点下游的功能研究。","authors":"Yujie Liu, Michael R Nonnemacher, Aikaterini Alexaki, Vanessa Pirrone, Anupam Banerjee, Luna Li, Evelyn Kilareski, Brian Wigdahl","doi":"10.1177/1179555717694556","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have identified a CCAAT/enhancer binding protein (C/EBP) site located downstream of the transcriptional start site (DS3). The role of the DS3 element with respect to HIV-1 transactivation by Tat and viral replication has not been characterized. We have demonstrated that DS3 was a functional C/EBPβ binding site and mutation of this site to the C/EBP knockout DS3-9C variant showed lower HIV-1 long terminal repeat (LTR) transactivation by C/EBPβ. However, it was able to exhibit similar or even higher transcription levels by Tat compared to the parental LTR. C/EBPβ and Tat together further enhanced the transcription level of the parental LAI-LTR and DS3-9C LTR, with higher levels in the DS3-9C LTR. HIV molecular clone viruses carrying the DS3-9C variant LTR demonstrated a decreased replication capacity and delayed rate of replication. These results suggest that DS3 plays a role in virus transcriptional initiation and provides new insight into C/EBP regulation of HIV-1.</p>","PeriodicalId":43543,"journal":{"name":"Clinical Medicine Insights- Pathology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179555717694556","citationCount":"3","resultStr":"{\"title\":\"Functional Studies of CCAAT/Enhancer Binding Protein Site Located Downstream of the Transcriptional Start Site.\",\"authors\":\"Yujie Liu, Michael R Nonnemacher, Aikaterini Alexaki, Vanessa Pirrone, Anupam Banerjee, Luna Li, Evelyn Kilareski, Brian Wigdahl\",\"doi\":\"10.1177/1179555717694556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies have identified a CCAAT/enhancer binding protein (C/EBP) site located downstream of the transcriptional start site (DS3). The role of the DS3 element with respect to HIV-1 transactivation by Tat and viral replication has not been characterized. We have demonstrated that DS3 was a functional C/EBPβ binding site and mutation of this site to the C/EBP knockout DS3-9C variant showed lower HIV-1 long terminal repeat (LTR) transactivation by C/EBPβ. However, it was able to exhibit similar or even higher transcription levels by Tat compared to the parental LTR. C/EBPβ and Tat together further enhanced the transcription level of the parental LAI-LTR and DS3-9C LTR, with higher levels in the DS3-9C LTR. HIV molecular clone viruses carrying the DS3-9C variant LTR demonstrated a decreased replication capacity and delayed rate of replication. These results suggest that DS3 plays a role in virus transcriptional initiation and provides new insight into C/EBP regulation of HIV-1.</p>\",\"PeriodicalId\":43543,\"journal\":{\"name\":\"Clinical Medicine Insights- Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1179555717694556\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Medicine Insights- Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1179555717694556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Medicine Insights- Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1179555717694556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Functional Studies of CCAAT/Enhancer Binding Protein Site Located Downstream of the Transcriptional Start Site.
Previous studies have identified a CCAAT/enhancer binding protein (C/EBP) site located downstream of the transcriptional start site (DS3). The role of the DS3 element with respect to HIV-1 transactivation by Tat and viral replication has not been characterized. We have demonstrated that DS3 was a functional C/EBPβ binding site and mutation of this site to the C/EBP knockout DS3-9C variant showed lower HIV-1 long terminal repeat (LTR) transactivation by C/EBPβ. However, it was able to exhibit similar or even higher transcription levels by Tat compared to the parental LTR. C/EBPβ and Tat together further enhanced the transcription level of the parental LAI-LTR and DS3-9C LTR, with higher levels in the DS3-9C LTR. HIV molecular clone viruses carrying the DS3-9C variant LTR demonstrated a decreased replication capacity and delayed rate of replication. These results suggest that DS3 plays a role in virus transcriptional initiation and provides new insight into C/EBP regulation of HIV-1.