Andrew Uhlman, Kelly Folkers, Jared Liston, Harshida Pancholi, Ayana Hinton
{"title":"空泡H+- atp酶抑制对MDA-MB231乳腺癌细胞组织蛋白酶B和组织蛋白酶L活化的影响","authors":"Andrew Uhlman, Kelly Folkers, Jared Liston, Harshida Pancholi, Ayana Hinton","doi":"10.1007/s12307-017-0196-7","DOIUrl":null,"url":null,"abstract":"<p><p>Studies indicate secreted cathepsins are involved in metastasis. V-ATPases, which are necessary for activating intracellular cathepsins, also play a role in metastasis and are targeted to the plasma membrane of metastatic breast cancer cells. We are interested in a connection between cell surface V-ATPases, activation of secreted cathepsins and the metastatic phenotype of MDA-MB231 cells. We investigated whether V-ATPase inhibition would reduce the activity of secreted cathepsin B and cathepsin L. Using cell lysates and conditioned media, we measured cathepsin B and L activity within and outside of the cells. We found different forms of cathepsin B and L were secreted representing the pre-pro, pro and active forms of the proteases. Cathepsin B activity was higher than cathepsin L in conditioned media and in cell lysates. V-ATPase inhibition by concanamycin A decreased cathepsin B activity in conditioned media and significantly decreased cathepsin B activity in cell lysates. Cathepsin L activity showed a slight decrease in cell lysates. Changes in the activity of secreted and intracellular cathepsins following V-ATPase inhibition were supported by changes in the amounts of pro and active forms of cathepsin B in conditioned media and cathepsins B and L in cell lysates. Overall, our data shows that inactive forms of cathepsins B and L are secreted from the MB231 cells and V-ATPase activity is important for the activation of secreted cathepsin B. This indicates a connection between cell surface V-ATPases in metastatic breast cancer cells and the function of secreted cathepsin B.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"49-56"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0196-7","citationCount":"15","resultStr":"{\"title\":\"Effects of Vacuolar H<sup>+</sup>-ATPase Inhibition on Activation of Cathepsin B and Cathepsin L Secreted from MDA-MB231 Breast Cancer Cells.\",\"authors\":\"Andrew Uhlman, Kelly Folkers, Jared Liston, Harshida Pancholi, Ayana Hinton\",\"doi\":\"10.1007/s12307-017-0196-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies indicate secreted cathepsins are involved in metastasis. V-ATPases, which are necessary for activating intracellular cathepsins, also play a role in metastasis and are targeted to the plasma membrane of metastatic breast cancer cells. We are interested in a connection between cell surface V-ATPases, activation of secreted cathepsins and the metastatic phenotype of MDA-MB231 cells. We investigated whether V-ATPase inhibition would reduce the activity of secreted cathepsin B and cathepsin L. Using cell lysates and conditioned media, we measured cathepsin B and L activity within and outside of the cells. We found different forms of cathepsin B and L were secreted representing the pre-pro, pro and active forms of the proteases. Cathepsin B activity was higher than cathepsin L in conditioned media and in cell lysates. V-ATPase inhibition by concanamycin A decreased cathepsin B activity in conditioned media and significantly decreased cathepsin B activity in cell lysates. Cathepsin L activity showed a slight decrease in cell lysates. Changes in the activity of secreted and intracellular cathepsins following V-ATPase inhibition were supported by changes in the amounts of pro and active forms of cathepsin B in conditioned media and cathepsins B and L in cell lysates. Overall, our data shows that inactive forms of cathepsins B and L are secreted from the MB231 cells and V-ATPase activity is important for the activation of secreted cathepsin B. This indicates a connection between cell surface V-ATPases in metastatic breast cancer cells and the function of secreted cathepsin B.</p>\",\"PeriodicalId\":9425,\"journal\":{\"name\":\"Cancer Microenvironment\",\"volume\":\"10 1-3\",\"pages\":\"49-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12307-017-0196-7\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Microenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12307-017-0196-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12307-017-0196-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Effects of Vacuolar H+-ATPase Inhibition on Activation of Cathepsin B and Cathepsin L Secreted from MDA-MB231 Breast Cancer Cells.
Studies indicate secreted cathepsins are involved in metastasis. V-ATPases, which are necessary for activating intracellular cathepsins, also play a role in metastasis and are targeted to the plasma membrane of metastatic breast cancer cells. We are interested in a connection between cell surface V-ATPases, activation of secreted cathepsins and the metastatic phenotype of MDA-MB231 cells. We investigated whether V-ATPase inhibition would reduce the activity of secreted cathepsin B and cathepsin L. Using cell lysates and conditioned media, we measured cathepsin B and L activity within and outside of the cells. We found different forms of cathepsin B and L were secreted representing the pre-pro, pro and active forms of the proteases. Cathepsin B activity was higher than cathepsin L in conditioned media and in cell lysates. V-ATPase inhibition by concanamycin A decreased cathepsin B activity in conditioned media and significantly decreased cathepsin B activity in cell lysates. Cathepsin L activity showed a slight decrease in cell lysates. Changes in the activity of secreted and intracellular cathepsins following V-ATPase inhibition were supported by changes in the amounts of pro and active forms of cathepsin B in conditioned media and cathepsins B and L in cell lysates. Overall, our data shows that inactive forms of cathepsins B and L are secreted from the MB231 cells and V-ATPase activity is important for the activation of secreted cathepsin B. This indicates a connection between cell surface V-ATPases in metastatic breast cancer cells and the function of secreted cathepsin B.
期刊介绍:
Cancer Microenvironment is the official journal of the International Cancer Microenvironment Society (ICMS). It publishes original studies in all aspects of basic, clinical and translational research devoted to the study of cancer microenvironment. It also features reports on clinical trials.
Coverage in Cancer Microenvironment includes: regulation of gene expression in the cancer microenvironment; innate and adaptive immunity in the cancer microenvironment, inflammation and cancer; tumor-associated stroma and extracellular matrix, tumor-endothelium interactions (angiogenesis, extravasation), cancer stem cells, the metastatic niche, targeting the tumor microenvironment: preclinical and clinical trials.