{"title":"Hsp104过表达对[PSI+]的固化:解开谜团的线索。","authors":"Lois E Greene, Xiaohong Zhao, Evan Eisenberg","doi":"10.1080/19336896.2017.1412911","DOIUrl":null,"url":null,"abstract":"<p><p>The yeast [PSI<sup>+</sup>] prion, which is the amyloid form of Sup35, has the unusual property of being cured not only by the inactivation of, but also by the overexpression of Hsp104. Even though this latter observation was made more than two decades ago, the mechanism of curing by Hsp104 overexpression has remained controversial. This question has been investigated in depth by our laboratory by combining live cell imaging of GFP-labeled Sup35 with standard plating assays of yeast overexpressing Hsp104. We will discuss why the curing of [PSI<sup>+</sup>] by Hsp104 overexpression is not compatible with a mechanism of either inhibition of severing of the prion seeds or asymmetric segregation of the seeds. Instead, our recent data (J. Biol. Chem. 292:8630-8641) indicate that curing is due to dissolution of the prion seeds, which in turn is dependent on the trimming activity of Hsp104. This trimming activity decreases the size of the seeds by dissociating monomers from the fibers, but unlike Hsp104 severing activity, it does not increase the number of prion seeds. Finally, we will discuss the other factors that affect the curing of [PSI<sup>+</sup>] by Hsp104 overexpression and how these factors may relate to the trimming activity of Hsp104.</p>","PeriodicalId":54585,"journal":{"name":"Prion","volume":"12 1","pages":"9-15"},"PeriodicalIF":1.9000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336896.2017.1412911","citationCount":"10","resultStr":"{\"title\":\"Curing of [PSI<sup>+</sup>] by Hsp104 Overexpression: Clues to solving the puzzle.\",\"authors\":\"Lois E Greene, Xiaohong Zhao, Evan Eisenberg\",\"doi\":\"10.1080/19336896.2017.1412911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The yeast [PSI<sup>+</sup>] prion, which is the amyloid form of Sup35, has the unusual property of being cured not only by the inactivation of, but also by the overexpression of Hsp104. Even though this latter observation was made more than two decades ago, the mechanism of curing by Hsp104 overexpression has remained controversial. This question has been investigated in depth by our laboratory by combining live cell imaging of GFP-labeled Sup35 with standard plating assays of yeast overexpressing Hsp104. We will discuss why the curing of [PSI<sup>+</sup>] by Hsp104 overexpression is not compatible with a mechanism of either inhibition of severing of the prion seeds or asymmetric segregation of the seeds. Instead, our recent data (J. Biol. Chem. 292:8630-8641) indicate that curing is due to dissolution of the prion seeds, which in turn is dependent on the trimming activity of Hsp104. This trimming activity decreases the size of the seeds by dissociating monomers from the fibers, but unlike Hsp104 severing activity, it does not increase the number of prion seeds. Finally, we will discuss the other factors that affect the curing of [PSI<sup>+</sup>] by Hsp104 overexpression and how these factors may relate to the trimming activity of Hsp104.</p>\",\"PeriodicalId\":54585,\"journal\":{\"name\":\"Prion\",\"volume\":\"12 1\",\"pages\":\"9-15\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336896.2017.1412911\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prion\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336896.2017.1412911\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prion","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336896.2017.1412911","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Curing of [PSI+] by Hsp104 Overexpression: Clues to solving the puzzle.
The yeast [PSI+] prion, which is the amyloid form of Sup35, has the unusual property of being cured not only by the inactivation of, but also by the overexpression of Hsp104. Even though this latter observation was made more than two decades ago, the mechanism of curing by Hsp104 overexpression has remained controversial. This question has been investigated in depth by our laboratory by combining live cell imaging of GFP-labeled Sup35 with standard plating assays of yeast overexpressing Hsp104. We will discuss why the curing of [PSI+] by Hsp104 overexpression is not compatible with a mechanism of either inhibition of severing of the prion seeds or asymmetric segregation of the seeds. Instead, our recent data (J. Biol. Chem. 292:8630-8641) indicate that curing is due to dissolution of the prion seeds, which in turn is dependent on the trimming activity of Hsp104. This trimming activity decreases the size of the seeds by dissociating monomers from the fibers, but unlike Hsp104 severing activity, it does not increase the number of prion seeds. Finally, we will discuss the other factors that affect the curing of [PSI+] by Hsp104 overexpression and how these factors may relate to the trimming activity of Hsp104.
期刊介绍:
Prion is the first international peer-reviewed open access journal to focus exclusively on protein folding and misfolding, protein assembly disorders, protein-based and structural inheritance. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The overriding criteria for publication in Prion are originality, scientific merit and general interest.