Macauley S Breault, Adam D Costanza, Nathan A Wood, Michael J Passineau, Cameron N Riviere
{"title":"平面心外膜导线机器人的自动标定。","authors":"Macauley S Breault, Adam D Costanza, Nathan A Wood, Michael J Passineau, Cameron N Riviere","doi":"10.1109/NEBEC.2015.7117150","DOIUrl":null,"url":null,"abstract":"<p><p>Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on controlling the movement of Cerberus required accurate knowledge of device geometry. In order to determine the geometry of the device <i>in vivo</i>, this paper presents work on developing an auto-calibration procedure to measure the geometry of the robot using force sensors to move injector. The presented auto-calibration routine is able to identify the shape of the device to within 0.5 mm and 0.9°.</p>","PeriodicalId":74545,"journal":{"name":"Proceedings of the IEEE ... annual Northeast Bioengineering Conference. IEEE Northeast Bioengineering Conference","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NEBEC.2015.7117150","citationCount":"3","resultStr":"{\"title\":\"Auto-Calibration for a Planar Epicardial Wire Robot.\",\"authors\":\"Macauley S Breault, Adam D Costanza, Nathan A Wood, Michael J Passineau, Cameron N Riviere\",\"doi\":\"10.1109/NEBEC.2015.7117150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on controlling the movement of Cerberus required accurate knowledge of device geometry. In order to determine the geometry of the device <i>in vivo</i>, this paper presents work on developing an auto-calibration procedure to measure the geometry of the robot using force sensors to move injector. The presented auto-calibration routine is able to identify the shape of the device to within 0.5 mm and 0.9°.</p>\",\"PeriodicalId\":74545,\"journal\":{\"name\":\"Proceedings of the IEEE ... annual Northeast Bioengineering Conference. IEEE Northeast Bioengineering Conference\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/NEBEC.2015.7117150\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE ... annual Northeast Bioengineering Conference. IEEE Northeast Bioengineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEBEC.2015.7117150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE ... annual Northeast Bioengineering Conference. IEEE Northeast Bioengineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBEC.2015.7117150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Auto-Calibration for a Planar Epicardial Wire Robot.
Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on controlling the movement of Cerberus required accurate knowledge of device geometry. In order to determine the geometry of the device in vivo, this paper presents work on developing an auto-calibration procedure to measure the geometry of the robot using force sensors to move injector. The presented auto-calibration routine is able to identify the shape of the device to within 0.5 mm and 0.9°.