肠道内分泌学概念的变化。

Endocrine development Pub Date : 2017-01-01 Epub Date: 2017-08-15 DOI:10.1159/000475728
Jens F Rehfeld
{"title":"肠道内分泌学概念的变化。","authors":"Jens F Rehfeld","doi":"10.1159/000475728","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal hormones are released from enteroendocrine cells in the digestive tract. More than 30 hormone genes are expressed, which make the gut the largest endocrine organ in the body. At present, it is feasible to conceive the hormones under 5 headings: the structural homology groups most hormones into 9 families, each of which is assumed to originate from a single gene. Today's hormone gene often has multiple phenotypes due to alternative splicing, tandem organization or differentiated maturation of the prohormone. By these mechanisms, more than 100 different hormonal peptides are released from the gut. Gut hormones are also widely expressed in extraintestinal cells. These cells may release different fragments of the same prohormone due to cell-specific processing pathways. Moreover, endocrine cells, immune cells, neurons, myocytes, kidney cells, sperm cells and cancer cells secrete gut peptides in different ways, so the same peptide may act for instance as a hormone, a neurotransmitter, a cytokine, a growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein coupled receptors that are expressed in the cell membrane all over the body. Thus, each gut hormone constitutes a regulatory system operating in the whole organism.</p>","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"32 ","pages":"8-19"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000475728","citationCount":"5","resultStr":"{\"title\":\"The Changing Concept of Gut Endocrinology.\",\"authors\":\"Jens F Rehfeld\",\"doi\":\"10.1159/000475728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastrointestinal hormones are released from enteroendocrine cells in the digestive tract. More than 30 hormone genes are expressed, which make the gut the largest endocrine organ in the body. At present, it is feasible to conceive the hormones under 5 headings: the structural homology groups most hormones into 9 families, each of which is assumed to originate from a single gene. Today's hormone gene often has multiple phenotypes due to alternative splicing, tandem organization or differentiated maturation of the prohormone. By these mechanisms, more than 100 different hormonal peptides are released from the gut. Gut hormones are also widely expressed in extraintestinal cells. These cells may release different fragments of the same prohormone due to cell-specific processing pathways. Moreover, endocrine cells, immune cells, neurons, myocytes, kidney cells, sperm cells and cancer cells secrete gut peptides in different ways, so the same peptide may act for instance as a hormone, a neurotransmitter, a cytokine, a growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein coupled receptors that are expressed in the cell membrane all over the body. Thus, each gut hormone constitutes a regulatory system operating in the whole organism.</p>\",\"PeriodicalId\":72906,\"journal\":{\"name\":\"Endocrine development\",\"volume\":\"32 \",\"pages\":\"8-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000475728\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000475728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000475728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

胃肠道激素由消化道内的肠内分泌细胞释放。有30多种激素基因表达,使肠道成为人体最大的内分泌器官。目前,可以将激素分为5类:结构同源性将大多数激素分为9个家族,每个家族都被认为起源于单个基因。由于选择性剪接、串联组织或激素原的分化成熟,当今的激素基因通常具有多种表型。通过这些机制,100多种不同的激素肽从肠道中释放出来。肠道激素也广泛表达于肠外细胞。由于细胞特异性的加工途径,这些细胞可能释放相同激素原的不同片段。此外,内分泌细胞、免疫细胞、神经元、肌细胞、肾细胞、精子细胞和癌细胞以不同的方式分泌肠道肽,因此同样的肽可以作为激素、神经递质、细胞因子、生长因子或生育因子。胃肠道激素的作用靶点是在全身细胞膜上表达的特异性g蛋白偶联受体。因此,每一种肠道激素构成了一个在整个生物体中运作的调节系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Changing Concept of Gut Endocrinology.

Gastrointestinal hormones are released from enteroendocrine cells in the digestive tract. More than 30 hormone genes are expressed, which make the gut the largest endocrine organ in the body. At present, it is feasible to conceive the hormones under 5 headings: the structural homology groups most hormones into 9 families, each of which is assumed to originate from a single gene. Today's hormone gene often has multiple phenotypes due to alternative splicing, tandem organization or differentiated maturation of the prohormone. By these mechanisms, more than 100 different hormonal peptides are released from the gut. Gut hormones are also widely expressed in extraintestinal cells. These cells may release different fragments of the same prohormone due to cell-specific processing pathways. Moreover, endocrine cells, immune cells, neurons, myocytes, kidney cells, sperm cells and cancer cells secrete gut peptides in different ways, so the same peptide may act for instance as a hormone, a neurotransmitter, a cytokine, a growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein coupled receptors that are expressed in the cell membrane all over the body. Thus, each gut hormone constitutes a regulatory system operating in the whole organism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transition of Care from Childhood to Adulthood: Turner Syndrome. Fertility Preservation in Endocrine Disorders during Transition for Girls. Management of Hypothalamic Obesity during Transition from Childhood to Adulthood. Transition of Care from Childhood to Adulthood: Congenital Hypogonadotropic Hypogonadism. Challenges of the Transition from Pediatric Care to Care of Adults: "Say Goodbye, Say Hello".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1