Laura A Muruato, Daniel Tapia, Christopher L Hatcher, Mridul Kalita, Paul J Brett, Anthony E Gregory, James E Samuel, Richard W Titball, Alfredo G Torres
{"title":"利用反向疫苗学设计和构建假马利氏伯克氏菌纳米糖结合疫苗。","authors":"Laura A Muruato, Daniel Tapia, Christopher L Hatcher, Mridul Kalita, Paul J Brett, Anthony E Gregory, James E Samuel, Richard W Titball, Alfredo G Torres","doi":"10.1128/CVI.00206-17","DOIUrl":null,"url":null,"abstract":"<p><p><i>Burkholderia pseudomallei</i> is a Gram-negative, facultative intracellular pathogen that causes the disease melioidosis in humans and other mammals. Respiratory infection with <i>B. pseudomallei</i> leads to a fulminant and often fatal disease. It has previously been shown that glycoconjugate vaccines can provide significant protection against lethal challenge; however, the limited number of known <i>Burkholderia</i> antigens has slowed progress toward vaccine development. The objective of this study was to identify novel antigens and evaluate their protective capacity when incorporated into a nanoglycoconjugate vaccine platform. First, an <i>in silico</i> approach to identify antigens with strong predicted immunogenicity was developed. Protein candidates were screened and ranked according to predicted subcellular localization, transmembrane domains, adhesive properties, and ability to interact with major histocompatibility complex (MHC) class I and class II. From these <i>in silico</i> predictions, we identified seven \"high priority\" proteins that demonstrated seroreactivity with anti-<i>B. pseudomallei</i> murine sera and convalescent human melioidosis sera, providing validation of our methods. Two novel proteins, together with Hcp1, were linked to lipopolysaccharide (LPS) and incorporated with the surface of a gold nanoparticle (AuNP). Animals receiving AuNP glycoconjugate vaccines generated high protein- and polysaccharide-specific antibody titers. Importantly, immunized animals receiving the AuNP-FlgL-LPS alone or as a combination demonstrated up to 100% survival and reduced lung colonization following a lethal challenge with <i>B. pseudomallei</i> Together, this study provides a rational approach to vaccine design that can be adapted for other complex pathogens and provides a rationale for further preclinical testing of AuNP glycoconjugate in animal models of infection.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00206-17","citationCount":"37","resultStr":"{\"title\":\"Use of Reverse Vaccinology in the Design and Construction of Nanoglycoconjugate Vaccines against Burkholderia pseudomallei.\",\"authors\":\"Laura A Muruato, Daniel Tapia, Christopher L Hatcher, Mridul Kalita, Paul J Brett, Anthony E Gregory, James E Samuel, Richard W Titball, Alfredo G Torres\",\"doi\":\"10.1128/CVI.00206-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Burkholderia pseudomallei</i> is a Gram-negative, facultative intracellular pathogen that causes the disease melioidosis in humans and other mammals. Respiratory infection with <i>B. pseudomallei</i> leads to a fulminant and often fatal disease. It has previously been shown that glycoconjugate vaccines can provide significant protection against lethal challenge; however, the limited number of known <i>Burkholderia</i> antigens has slowed progress toward vaccine development. The objective of this study was to identify novel antigens and evaluate their protective capacity when incorporated into a nanoglycoconjugate vaccine platform. First, an <i>in silico</i> approach to identify antigens with strong predicted immunogenicity was developed. Protein candidates were screened and ranked according to predicted subcellular localization, transmembrane domains, adhesive properties, and ability to interact with major histocompatibility complex (MHC) class I and class II. From these <i>in silico</i> predictions, we identified seven \\\"high priority\\\" proteins that demonstrated seroreactivity with anti-<i>B. pseudomallei</i> murine sera and convalescent human melioidosis sera, providing validation of our methods. Two novel proteins, together with Hcp1, were linked to lipopolysaccharide (LPS) and incorporated with the surface of a gold nanoparticle (AuNP). Animals receiving AuNP glycoconjugate vaccines generated high protein- and polysaccharide-specific antibody titers. Importantly, immunized animals receiving the AuNP-FlgL-LPS alone or as a combination demonstrated up to 100% survival and reduced lung colonization following a lethal challenge with <i>B. pseudomallei</i> Together, this study provides a rational approach to vaccine design that can be adapted for other complex pathogens and provides a rationale for further preclinical testing of AuNP glycoconjugate in animal models of infection.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/CVI.00206-17\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00206-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00206-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Use of Reverse Vaccinology in the Design and Construction of Nanoglycoconjugate Vaccines against Burkholderia pseudomallei.
Burkholderia pseudomallei is a Gram-negative, facultative intracellular pathogen that causes the disease melioidosis in humans and other mammals. Respiratory infection with B. pseudomallei leads to a fulminant and often fatal disease. It has previously been shown that glycoconjugate vaccines can provide significant protection against lethal challenge; however, the limited number of known Burkholderia antigens has slowed progress toward vaccine development. The objective of this study was to identify novel antigens and evaluate their protective capacity when incorporated into a nanoglycoconjugate vaccine platform. First, an in silico approach to identify antigens with strong predicted immunogenicity was developed. Protein candidates were screened and ranked according to predicted subcellular localization, transmembrane domains, adhesive properties, and ability to interact with major histocompatibility complex (MHC) class I and class II. From these in silico predictions, we identified seven "high priority" proteins that demonstrated seroreactivity with anti-B. pseudomallei murine sera and convalescent human melioidosis sera, providing validation of our methods. Two novel proteins, together with Hcp1, were linked to lipopolysaccharide (LPS) and incorporated with the surface of a gold nanoparticle (AuNP). Animals receiving AuNP glycoconjugate vaccines generated high protein- and polysaccharide-specific antibody titers. Importantly, immunized animals receiving the AuNP-FlgL-LPS alone or as a combination demonstrated up to 100% survival and reduced lung colonization following a lethal challenge with B. pseudomallei Together, this study provides a rational approach to vaccine design that can be adapted for other complex pathogens and provides a rationale for further preclinical testing of AuNP glycoconjugate in animal models of infection.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.