遍历NGS读数据集的k-mer景观,用于质量分数稀疏化。

Y William Yu, Deniz Yorukoglu, Bonnie Berger
{"title":"遍历NGS读数据集的k-mer景观,用于质量分数稀疏化。","authors":"Y William Yu,&nbsp;Deniz Yorukoglu,&nbsp;Bonnie Berger","doi":"10.1007/978-3-319-05269-4_31","DOIUrl":null,"url":null,"abstract":"<p><p>It is becoming increasingly impractical to indefinitely store raw sequencing data for later processing in an uncompressed state. In this paper, we describe a scalable compressive framework, Read-Quality-Sparsifier (RQS), which substantially outperforms the compression ratio and speed of other de novo quality score compression methods while maintaining SNP-calling accuracy. Surprisingly, RQS also improves the SNP-calling accuracy on a gold-standard, real-life sequencing dataset (NA12878) using a <i>k</i>-mer density profile constructed from 77 other individuals from the 1000 Genomes Project. This improvement in downstream accuracy emerges from the observation that quality score values within NGS datasets are inherently encoded in the <i>k</i>-mer landscape of the genomic sequences. To our knowledge, RQS is the first scalable sequence based quality compression method that can efficiently compress quality scores of terabyte-sized and larger sequencing datasets.</p><p><strong>Availability: </strong>An implementation of our method, RQS, is available for download at: http://rqs.csail.mit.edu/.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"8394 ","pages":"385-399"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-05269-4_31","citationCount":"26","resultStr":"{\"title\":\"Traversing the <i>k</i>-mer Landscape of NGS Read Datasets for Quality Score Sparsification.\",\"authors\":\"Y William Yu,&nbsp;Deniz Yorukoglu,&nbsp;Bonnie Berger\",\"doi\":\"10.1007/978-3-319-05269-4_31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is becoming increasingly impractical to indefinitely store raw sequencing data for later processing in an uncompressed state. In this paper, we describe a scalable compressive framework, Read-Quality-Sparsifier (RQS), which substantially outperforms the compression ratio and speed of other de novo quality score compression methods while maintaining SNP-calling accuracy. Surprisingly, RQS also improves the SNP-calling accuracy on a gold-standard, real-life sequencing dataset (NA12878) using a <i>k</i>-mer density profile constructed from 77 other individuals from the 1000 Genomes Project. This improvement in downstream accuracy emerges from the observation that quality score values within NGS datasets are inherently encoded in the <i>k</i>-mer landscape of the genomic sequences. To our knowledge, RQS is the first scalable sequence based quality compression method that can efficiently compress quality scores of terabyte-sized and larger sequencing datasets.</p><p><strong>Availability: </strong>An implementation of our method, RQS, is available for download at: http://rqs.csail.mit.edu/.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"8394 \",\"pages\":\"385-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-05269-4_31\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-05269-4_31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-05269-4_31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

无限期地存储原始测序数据以供以后在未压缩状态下进行处理变得越来越不切实际。在本文中,我们描述了一个可扩展的压缩框架,Read-Quality-Sparsifier (RQS),它在保持snp调用准确性的同时,大大优于其他全新的质量分数压缩方法的压缩比和速度。令人惊讶的是,RQS还提高了对黄金标准的真实测序数据集(NA12878)的snp调用准确性,该数据集使用了来自1000基因组计划的77个其他个体构建的k-mer密度谱。这种下游精度的提高来自于观察到NGS数据集中的质量得分值固有地编码在基因组序列的k-mer景观中。据我们所知,RQS是第一个可扩展的基于序列的质量压缩方法,可以有效地压缩tb大小和更大的测序数据集的质量分数。可用性:我们的方法RQS的实现可在http://rqs.csail.mit.edu/下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traversing the k-mer Landscape of NGS Read Datasets for Quality Score Sparsification.

It is becoming increasingly impractical to indefinitely store raw sequencing data for later processing in an uncompressed state. In this paper, we describe a scalable compressive framework, Read-Quality-Sparsifier (RQS), which substantially outperforms the compression ratio and speed of other de novo quality score compression methods while maintaining SNP-calling accuracy. Surprisingly, RQS also improves the SNP-calling accuracy on a gold-standard, real-life sequencing dataset (NA12878) using a k-mer density profile constructed from 77 other individuals from the 1000 Genomes Project. This improvement in downstream accuracy emerges from the observation that quality score values within NGS datasets are inherently encoded in the k-mer landscape of the genomic sequences. To our knowledge, RQS is the first scalable sequence based quality compression method that can efficiently compress quality scores of terabyte-sized and larger sequencing datasets.

Availability: An implementation of our method, RQS, is available for download at: http://rqs.csail.mit.edu/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1