人肠道微生物甲基戊酸梭菌的膜结合焦磷酸酶提高了大肠杆菌、酿酒酵母和烟草的耐盐性。

Q3 Biochemistry, Genetics and Molecular Biology Molecular Membrane Biology Pub Date : 2016-05-01 DOI:10.1080/09687688.2017.1370145
Yumei Yang, Yanjuan Liu, Hang Yuan, Xian Liu, Yanxiu Gao, Ming Gong, Zhurong Zou
{"title":"人肠道微生物甲基戊酸梭菌的膜结合焦磷酸酶提高了大肠杆菌、酿酒酵母和烟草的耐盐性。","authors":"Yumei Yang,&nbsp;Yanjuan Liu,&nbsp;Hang Yuan,&nbsp;Xian Liu,&nbsp;Yanxiu Gao,&nbsp;Ming Gong,&nbsp;Zhurong Zou","doi":"10.1080/09687688.2017.1370145","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane-bound pyrophosphatases (PPases) are involved in the adaption of organisms to stress conditions, which was substantiated by numerous plant transgenic studies with H<sup>+</sup>-PPase yet devoid of any correlated evidences for other two subfamilies, Na<sup>+</sup>-PPase and Na<sup>+</sup>,H<sup>+</sup>-PPase. Herein, we demonstrate the gene cloning and functional evaluation of the membrane-bound PPase (CmPP) of the human gut microbe Clostridium methylpentosum. The CmPP gene encodes a single polypeptide of 699 amino acids that was predicted as a multi-spanning membrane and K<sup>+</sup>-dependent Na<sup>+</sup>,H<sup>+</sup>-PPase. Heterologous expression of CmPP could significantly enhance the salt tolerance of both Escherichia coli and Saccharomyces cerevisiae, and this effect in yeast could be fortified by N-terminal addition of a vacuole-targeting signal peptide from the H<sup>+</sup>-PPase of Trypanosoma cruzi. Furthermore, introduction of CmPP could remarkably improve the salt tolerance of tobacco, implying its potential use in constructing salt-resistant transgenic crops. Consequently, the possible mechanisms of CmPP to underlie salt tolerance are discussed.</p>","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"33 3-5","pages":"39-50"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09687688.2017.1370145","citationCount":"2","resultStr":"{\"title\":\"Membrane-bound pyrophosphatase of human gut microbe Clostridium methylpentosum confers improved salt tolerance in Escherichia coli, Saccharomyces cerevisiae and tobacco.\",\"authors\":\"Yumei Yang,&nbsp;Yanjuan Liu,&nbsp;Hang Yuan,&nbsp;Xian Liu,&nbsp;Yanxiu Gao,&nbsp;Ming Gong,&nbsp;Zhurong Zou\",\"doi\":\"10.1080/09687688.2017.1370145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Membrane-bound pyrophosphatases (PPases) are involved in the adaption of organisms to stress conditions, which was substantiated by numerous plant transgenic studies with H<sup>+</sup>-PPase yet devoid of any correlated evidences for other two subfamilies, Na<sup>+</sup>-PPase and Na<sup>+</sup>,H<sup>+</sup>-PPase. Herein, we demonstrate the gene cloning and functional evaluation of the membrane-bound PPase (CmPP) of the human gut microbe Clostridium methylpentosum. The CmPP gene encodes a single polypeptide of 699 amino acids that was predicted as a multi-spanning membrane and K<sup>+</sup>-dependent Na<sup>+</sup>,H<sup>+</sup>-PPase. Heterologous expression of CmPP could significantly enhance the salt tolerance of both Escherichia coli and Saccharomyces cerevisiae, and this effect in yeast could be fortified by N-terminal addition of a vacuole-targeting signal peptide from the H<sup>+</sup>-PPase of Trypanosoma cruzi. Furthermore, introduction of CmPP could remarkably improve the salt tolerance of tobacco, implying its potential use in constructing salt-resistant transgenic crops. Consequently, the possible mechanisms of CmPP to underlie salt tolerance are discussed.</p>\",\"PeriodicalId\":18858,\"journal\":{\"name\":\"Molecular Membrane Biology\",\"volume\":\"33 3-5\",\"pages\":\"39-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09687688.2017.1370145\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Membrane Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09687688.2017.1370145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09687688.2017.1370145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

摘要

膜结合焦磷酸酶(PPases)参与了生物体对逆境条件的适应,这已经被大量的H+-PPase转基因植物研究证实,但其他两个亚家族Na+-PPase和Na+,H+-PPase缺乏相关证据。在此,我们展示了人肠道微生物甲基戊糖梭菌膜结合PPase (CmPP)的基因克隆和功能评价。CmPP基因编码一个由699个氨基酸组成的多肽,被预测为一个多跨膜和K+依赖的Na+,H+-PPase。CmPP的异源表达能显著增强大肠杆菌和酿酒酵母的耐盐性,在酵母中通过n端添加克氏锥虫H+-PPase的液泡靶向信号肽来增强这一作用。此外,引入CmPP可显著提高烟草的耐盐性,在构建耐盐转基因作物中具有潜在的应用价值。因此,讨论了CmPP在耐盐性中的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Membrane-bound pyrophosphatase of human gut microbe Clostridium methylpentosum confers improved salt tolerance in Escherichia coli, Saccharomyces cerevisiae and tobacco.

Membrane-bound pyrophosphatases (PPases) are involved in the adaption of organisms to stress conditions, which was substantiated by numerous plant transgenic studies with H+-PPase yet devoid of any correlated evidences for other two subfamilies, Na+-PPase and Na+,H+-PPase. Herein, we demonstrate the gene cloning and functional evaluation of the membrane-bound PPase (CmPP) of the human gut microbe Clostridium methylpentosum. The CmPP gene encodes a single polypeptide of 699 amino acids that was predicted as a multi-spanning membrane and K+-dependent Na+,H+-PPase. Heterologous expression of CmPP could significantly enhance the salt tolerance of both Escherichia coli and Saccharomyces cerevisiae, and this effect in yeast could be fortified by N-terminal addition of a vacuole-targeting signal peptide from the H+-PPase of Trypanosoma cruzi. Furthermore, introduction of CmPP could remarkably improve the salt tolerance of tobacco, implying its potential use in constructing salt-resistant transgenic crops. Consequently, the possible mechanisms of CmPP to underlie salt tolerance are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Membrane Biology
Molecular Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas: • Membrane receptors and signalling • Membrane transporters, pores and channels • Synthesis and structure of membrane proteins • Membrane translocation and targeting • Lipid organisation and asymmetry • Model membranes • Membrane trafficking • Cytoskeletal and extracellular membrane interactions • Cell adhesion and intercellular interactions • Molecular dynamics and molecular modelling of membranes. • Antimicrobial peptides.
期刊最新文献
Comparison between MassARRAY and pyrosequencing for CYP2C19 and ABCB1 gene variants of clopidogrel efficiency genotyping. BKCa channel is a molecular target of vitamin C to protect against ischemic brain stroke. The KdpFABC complex - K+ transport against all odds. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Potassium channels and their role in glioma: A mini review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1