{"title":"面向药物相关不良事件的大规模Twitter挖掘。","authors":"Jiang Bian,&nbsp;Umit Topaloglu,&nbsp;Fan Yu","doi":"10.1145/2389707.2389713","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-related adverse events pose substantial risks to patients who consume post-market or Drug-related adverse events pose substantial risks to patients who consume post-market or investigational drugs. Early detection of adverse events benefits not only the drug regulators, but also the manufacturers for pharmacovigilance. Existing methods rely on patients' \"spontaneous\" self-reports that attest problems. The increasing popularity of social media platforms like the Twitter presents us a new information source for finding potential adverse events. Given the high frequency of user updates, mining Twitter messages can lead us to real-time pharmacovigilance. In this paper, we describe an approach to find drug users and potential adverse events by analyzing the content of twitter messages utilizing Natural Language Processing (NLP) and to build Support Vector Machine (SVM) classifiers. Due to the size nature of the dataset (i.e., 2 billion Tweets), the experiments were conducted on a High Performance Computing (HPC) platform using MapReduce, which exhibits the trend of big data analytics. The results suggest that daily-life social networking data could help early detection of important patient safety issues.</p>","PeriodicalId":92138,"journal":{"name":"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)","volume":"2012 ","pages":"25-32"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2389707.2389713","citationCount":"235","resultStr":"{\"title\":\"Towards Large-scale Twitter Mining for Drug-related Adverse Events.\",\"authors\":\"Jiang Bian,&nbsp;Umit Topaloglu,&nbsp;Fan Yu\",\"doi\":\"10.1145/2389707.2389713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-related adverse events pose substantial risks to patients who consume post-market or Drug-related adverse events pose substantial risks to patients who consume post-market or investigational drugs. Early detection of adverse events benefits not only the drug regulators, but also the manufacturers for pharmacovigilance. Existing methods rely on patients' \\\"spontaneous\\\" self-reports that attest problems. The increasing popularity of social media platforms like the Twitter presents us a new information source for finding potential adverse events. Given the high frequency of user updates, mining Twitter messages can lead us to real-time pharmacovigilance. In this paper, we describe an approach to find drug users and potential adverse events by analyzing the content of twitter messages utilizing Natural Language Processing (NLP) and to build Support Vector Machine (SVM) classifiers. Due to the size nature of the dataset (i.e., 2 billion Tweets), the experiments were conducted on a High Performance Computing (HPC) platform using MapReduce, which exhibits the trend of big data analytics. The results suggest that daily-life social networking data could help early detection of important patient safety issues.</p>\",\"PeriodicalId\":92138,\"journal\":{\"name\":\"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)\",\"volume\":\"2012 \",\"pages\":\"25-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2389707.2389713\",\"citationCount\":\"235\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2389707.2389713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2389707.2389713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 235

摘要

药物相关不良事件对上市后用药的患者构成重大风险或药物相关不良事件对上市后用药或临床试验用药的患者构成重大风险。早期发现不良事件不仅有利于药品监管机构,也有利于制造商提高药物警戒。现有的方法依赖于患者“自发”的自我报告来证明问题。Twitter等社交媒体平台的日益普及为我们发现潜在不良事件提供了新的信息来源。考虑到用户更新的高频率,挖掘Twitter信息可以让我们进行实时药物警戒。在本文中,我们描述了一种方法,通过使用自然语言处理(NLP)分析twitter消息的内容来发现吸毒者和潜在的不良事件,并建立支持向量机(SVM)分类器。由于数据集的规模(即20亿条推文),实验是在高性能计算(High Performance Computing, HPC)平台上使用MapReduce进行的,这体现了大数据分析的趋势。研究结果表明,日常生活中的社交网络数据可以帮助早期发现重要的患者安全问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Large-scale Twitter Mining for Drug-related Adverse Events.

Drug-related adverse events pose substantial risks to patients who consume post-market or Drug-related adverse events pose substantial risks to patients who consume post-market or investigational drugs. Early detection of adverse events benefits not only the drug regulators, but also the manufacturers for pharmacovigilance. Existing methods rely on patients' "spontaneous" self-reports that attest problems. The increasing popularity of social media platforms like the Twitter presents us a new information source for finding potential adverse events. Given the high frequency of user updates, mining Twitter messages can lead us to real-time pharmacovigilance. In this paper, we describe an approach to find drug users and potential adverse events by analyzing the content of twitter messages utilizing Natural Language Processing (NLP) and to build Support Vector Machine (SVM) classifiers. Due to the size nature of the dataset (i.e., 2 billion Tweets), the experiments were conducted on a High Performance Computing (HPC) platform using MapReduce, which exhibits the trend of big data analytics. The results suggest that daily-life social networking data could help early detection of important patient safety issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Large-scale Twitter Mining for Drug-related Adverse Events. Social media mining for drug safety signal detection Simulating prosthetic vision with disortions for retinal prosthesis design Moving from descriptive to causal analytics: case study of discovering knowledge from us health indicators warehouse An architecture for personalized health information retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1