从非稳态/异构数据中发现因果关系:骨架估计与方向确定

Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, Bernhard Schölkopf
{"title":"从非稳态/异构数据中发现因果关系:骨架估计与方向确定","authors":"Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, Bernhard Schölkopf","doi":"10.24963/ijcai.2017/187","DOIUrl":null,"url":null,"abstract":"<p><p>It is commonplace to encounter nonstationary or heterogeneous data, of which the underlying generating process changes over time or across data sets (the data sets may have different experimental conditions or data collection conditions). Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper we develop a principled framework for causal discovery from such data, called Constraint-based causal Discovery from Nonstationary/heterogeneous Data (CD-NOD), which addresses two important questions. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a way to determine causal orientations by making use of independence changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. Experimental results on various synthetic and real-world data sets are presented to demonstrate the efficacy of our methods.</p>","PeriodicalId":73334,"journal":{"name":"IJCAI : proceedings of the conference","volume":"2017 ","pages":"1347-1353"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617646/pdf/nihms904880.pdf","citationCount":"0","resultStr":"{\"title\":\"Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination.\",\"authors\":\"Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, Bernhard Schölkopf\",\"doi\":\"10.24963/ijcai.2017/187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is commonplace to encounter nonstationary or heterogeneous data, of which the underlying generating process changes over time or across data sets (the data sets may have different experimental conditions or data collection conditions). Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper we develop a principled framework for causal discovery from such data, called Constraint-based causal Discovery from Nonstationary/heterogeneous Data (CD-NOD), which addresses two important questions. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a way to determine causal orientations by making use of independence changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. Experimental results on various synthetic and real-world data sets are presented to demonstrate the efficacy of our methods.</p>\",\"PeriodicalId\":73334,\"journal\":{\"name\":\"IJCAI : proceedings of the conference\",\"volume\":\"2017 \",\"pages\":\"1347-1353\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617646/pdf/nihms904880.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCAI : proceedings of the conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2017/187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCAI : proceedings of the conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2017/187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非平稳或异质数据是司空见惯的现象,其基本生成过程会随时间或数据集的变化而变化(数据集可能具有不同的实验条件或数据收集条件)。这种分布变化特征既是因果发现的挑战,也是机遇。在本文中,我们开发了一个从此类数据中发现因果关系的原则性框架,称为基于约束的非平稳/异构数据因果关系发现(CD-NOD),它解决了两个重要问题。首先,我们提出了一种基于约束的增强程序,用于检测局部机制发生变化的变量,并恢复观测变量的因果结构骨架。其次,我们提出了一种利用底层因果模型所隐含的数据分布的独立性变化来确定因果方向的方法,从而从分布变化所携带的信息中获益。我们展示了各种合成数据集和真实世界数据集的实验结果,以证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination.

It is commonplace to encounter nonstationary or heterogeneous data, of which the underlying generating process changes over time or across data sets (the data sets may have different experimental conditions or data collection conditions). Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper we develop a principled framework for causal discovery from such data, called Constraint-based causal Discovery from Nonstationary/heterogeneous Data (CD-NOD), which addresses two important questions. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a way to determine causal orientations by making use of independence changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. Experimental results on various synthetic and real-world data sets are presented to demonstrate the efficacy of our methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Modeling with Temporal Graphical Representation on Electronic Health Records. Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning. Stabilizing and Enhancing Link Prediction through Deepened Graph Auto-Encoders. RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1