{"title":"模型细胞膜电穿孔的原子模拟。","authors":"Mounir Tarek","doi":"10.1007/978-3-319-56895-9_1","DOIUrl":null,"url":null,"abstract":"<p><p>Electroporation is a phenomenon that modifies the fundamental function of the cell since it perturbs transiently or permanently the integrity of its membrane. Today, this technique is applied in fields ranging from biology and biotechnology to medicine, e.g., for drug and gene delivery into cells, tumor therapy, etc., in which it made it to preclinical and clinical treatments. Experimentally, due to the complexity and heterogeneity of cell membranes, it is difficult to provide a description of the electroporation phenomenon in terms of atomically resolved structural and dynamical processes, a prerequisite to optimize its use. Atomistic modeling in general and molecular dynamics (MD) simulations in particular have proven to be an effective approach for providing such a level of detail. This chapter provides the reader with a comprehensive account of recent advances in using such a technique to complement conventional experimental approaches in characterizing several aspects of cell membranes electroporation.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-56895-9_1","citationCount":"5","resultStr":"{\"title\":\"Atomistic Simulations of Electroporation of Model Cell Membranes.\",\"authors\":\"Mounir Tarek\",\"doi\":\"10.1007/978-3-319-56895-9_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroporation is a phenomenon that modifies the fundamental function of the cell since it perturbs transiently or permanently the integrity of its membrane. Today, this technique is applied in fields ranging from biology and biotechnology to medicine, e.g., for drug and gene delivery into cells, tumor therapy, etc., in which it made it to preclinical and clinical treatments. Experimentally, due to the complexity and heterogeneity of cell membranes, it is difficult to provide a description of the electroporation phenomenon in terms of atomically resolved structural and dynamical processes, a prerequisite to optimize its use. Atomistic modeling in general and molecular dynamics (MD) simulations in particular have proven to be an effective approach for providing such a level of detail. This chapter provides the reader with a comprehensive account of recent advances in using such a technique to complement conventional experimental approaches in characterizing several aspects of cell membranes electroporation.</p>\",\"PeriodicalId\":50879,\"journal\":{\"name\":\"Advances in Anatomy Embryology and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-56895-9_1\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Anatomy Embryology and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-56895-9_1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Anatomy Embryology and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/978-3-319-56895-9_1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Atomistic Simulations of Electroporation of Model Cell Membranes.
Electroporation is a phenomenon that modifies the fundamental function of the cell since it perturbs transiently or permanently the integrity of its membrane. Today, this technique is applied in fields ranging from biology and biotechnology to medicine, e.g., for drug and gene delivery into cells, tumor therapy, etc., in which it made it to preclinical and clinical treatments. Experimentally, due to the complexity and heterogeneity of cell membranes, it is difficult to provide a description of the electroporation phenomenon in terms of atomically resolved structural and dynamical processes, a prerequisite to optimize its use. Atomistic modeling in general and molecular dynamics (MD) simulations in particular have proven to be an effective approach for providing such a level of detail. This chapter provides the reader with a comprehensive account of recent advances in using such a technique to complement conventional experimental approaches in characterizing several aspects of cell membranes electroporation.
期刊介绍:
"Advances in Anatomy, Embryology and Cell Biology" presents critical reviews on all topical fields of normal and experimental anatomy including cell biology. The multi-perspective presentation of morphological aspects of basic biological phenomen in the human constitutes the main focus of the series. The contributions re-evaluate the latest findings and show ways for further research.