Daniel Oder, Dan Liu, Kai Hu, Nurcan Üçeyler, Tim Salinger, Jonas Müntze, Kristina Lorenz, Reinhard Kandolf, Hermann-Josef Gröne, Claudia Sommer, Georg Ertl, Christoph Wanner, Peter Nordbeck
{"title":"α-半乳糖苷酶A基因型N215S诱导法布里病特异性心脏变异","authors":"Daniel Oder, Dan Liu, Kai Hu, Nurcan Üçeyler, Tim Salinger, Jonas Müntze, Kristina Lorenz, Reinhard Kandolf, Hermann-Josef Gröne, Claudia Sommer, Georg Ertl, Christoph Wanner, Peter Nordbeck","doi":"10.1161/CIRCGENETICS.116.001691","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic cardiomyopathy is the most common type of cardiomyopathy, but many patients lack sarcomeric/myofilament mutations. We studied whether cardio-specific α-galactosidase A gene variants are misinterpreted as hypertrophic cardiomyopathy because of the lack of extracardiac organ involvement.</p><p><strong>Methods and results: </strong>All subjects who tested positive for the N215S genotype (n=26, 13 females, mean age 49±17 [range, 14-74] years) were characterized in this prospective monocentric longitudinal cohort study to determine genotype-specific clinical characteristics of the N215S (c.644A>G [p.Asn215Ser]) α-galactosidase A gene variant. All subjects were initially referred with suspicion of genetically determined hypertrophic cardiomyopathy. Cardiac hypertrophy (interventricular septum, 12±4 [7-23] mm; left ventricular posterior wall, 11±4 [7-21] mm; left ventricular mass, 86±41 [46-195] g/m<sup>2</sup>) was progressive, systolic function mainly preserved (cardiac index 2.8±0.6 [1.9-3.9] L/min per m<sup>2</sup>), and diastolic function mildly abnormal. Cardiac magnetic resonance imaging revealed replacement fibrosis in <i>loco typico</i> (18/26, 69%), particularly in subjects >50 years. Elderly subjects had advanced heart failure, and 6 (23%) were suggested for implantable cardioverter-defibrillator therapy. Leukocyte α-galactosidase A enzyme activity was mildly reduced in 19 subjects and lyso-globotriaosylceramide slightly elevated (median, 4.9; interquartile range, 1.3-9.1 ng/mL). Neurological and renal impairments (serum creatinine, 0.87±0.20; median, 0.80; interquartile range, 0.70-1.01 mg/dL; glomerular filtration rate, 102±23; median, 106; interquartile range, 84-113 mL/min) were discreet. Only 2 subjects developed clinically relevant proteinuria.</p><p><strong>Conclusions: </strong>α-Galactosidase A genotype N215S does not lead to the development of a classical Fabry phenotype but induces a specific cardiac variant of Fabry disease mimicking nonobstructive hypertrophic cardiomyopathy. The lack of prominent noncardiac impairment leads to a significant delay in diagnosis and Fabry-specific therapy.</p>","PeriodicalId":10277,"journal":{"name":"Circulation: Cardiovascular Genetics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.116.001691","citationCount":"26","resultStr":"{\"title\":\"α-Galactosidase A Genotype N215S Induces a Specific Cardiac Variant of Fabry Disease.\",\"authors\":\"Daniel Oder, Dan Liu, Kai Hu, Nurcan Üçeyler, Tim Salinger, Jonas Müntze, Kristina Lorenz, Reinhard Kandolf, Hermann-Josef Gröne, Claudia Sommer, Georg Ertl, Christoph Wanner, Peter Nordbeck\",\"doi\":\"10.1161/CIRCGENETICS.116.001691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hypertrophic cardiomyopathy is the most common type of cardiomyopathy, but many patients lack sarcomeric/myofilament mutations. We studied whether cardio-specific α-galactosidase A gene variants are misinterpreted as hypertrophic cardiomyopathy because of the lack of extracardiac organ involvement.</p><p><strong>Methods and results: </strong>All subjects who tested positive for the N215S genotype (n=26, 13 females, mean age 49±17 [range, 14-74] years) were characterized in this prospective monocentric longitudinal cohort study to determine genotype-specific clinical characteristics of the N215S (c.644A>G [p.Asn215Ser]) α-galactosidase A gene variant. All subjects were initially referred with suspicion of genetically determined hypertrophic cardiomyopathy. Cardiac hypertrophy (interventricular septum, 12±4 [7-23] mm; left ventricular posterior wall, 11±4 [7-21] mm; left ventricular mass, 86±41 [46-195] g/m<sup>2</sup>) was progressive, systolic function mainly preserved (cardiac index 2.8±0.6 [1.9-3.9] L/min per m<sup>2</sup>), and diastolic function mildly abnormal. Cardiac magnetic resonance imaging revealed replacement fibrosis in <i>loco typico</i> (18/26, 69%), particularly in subjects >50 years. Elderly subjects had advanced heart failure, and 6 (23%) were suggested for implantable cardioverter-defibrillator therapy. Leukocyte α-galactosidase A enzyme activity was mildly reduced in 19 subjects and lyso-globotriaosylceramide slightly elevated (median, 4.9; interquartile range, 1.3-9.1 ng/mL). Neurological and renal impairments (serum creatinine, 0.87±0.20; median, 0.80; interquartile range, 0.70-1.01 mg/dL; glomerular filtration rate, 102±23; median, 106; interquartile range, 84-113 mL/min) were discreet. Only 2 subjects developed clinically relevant proteinuria.</p><p><strong>Conclusions: </strong>α-Galactosidase A genotype N215S does not lead to the development of a classical Fabry phenotype but induces a specific cardiac variant of Fabry disease mimicking nonobstructive hypertrophic cardiomyopathy. The lack of prominent noncardiac impairment leads to a significant delay in diagnosis and Fabry-specific therapy.</p>\",\"PeriodicalId\":10277,\"journal\":{\"name\":\"Circulation: Cardiovascular Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.116.001691\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Cardiovascular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGENETICS.116.001691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.116.001691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
α-Galactosidase A Genotype N215S Induces a Specific Cardiac Variant of Fabry Disease.
Background: Hypertrophic cardiomyopathy is the most common type of cardiomyopathy, but many patients lack sarcomeric/myofilament mutations. We studied whether cardio-specific α-galactosidase A gene variants are misinterpreted as hypertrophic cardiomyopathy because of the lack of extracardiac organ involvement.
Methods and results: All subjects who tested positive for the N215S genotype (n=26, 13 females, mean age 49±17 [range, 14-74] years) were characterized in this prospective monocentric longitudinal cohort study to determine genotype-specific clinical characteristics of the N215S (c.644A>G [p.Asn215Ser]) α-galactosidase A gene variant. All subjects were initially referred with suspicion of genetically determined hypertrophic cardiomyopathy. Cardiac hypertrophy (interventricular septum, 12±4 [7-23] mm; left ventricular posterior wall, 11±4 [7-21] mm; left ventricular mass, 86±41 [46-195] g/m2) was progressive, systolic function mainly preserved (cardiac index 2.8±0.6 [1.9-3.9] L/min per m2), and diastolic function mildly abnormal. Cardiac magnetic resonance imaging revealed replacement fibrosis in loco typico (18/26, 69%), particularly in subjects >50 years. Elderly subjects had advanced heart failure, and 6 (23%) were suggested for implantable cardioverter-defibrillator therapy. Leukocyte α-galactosidase A enzyme activity was mildly reduced in 19 subjects and lyso-globotriaosylceramide slightly elevated (median, 4.9; interquartile range, 1.3-9.1 ng/mL). Neurological and renal impairments (serum creatinine, 0.87±0.20; median, 0.80; interquartile range, 0.70-1.01 mg/dL; glomerular filtration rate, 102±23; median, 106; interquartile range, 84-113 mL/min) were discreet. Only 2 subjects developed clinically relevant proteinuria.
Conclusions: α-Galactosidase A genotype N215S does not lead to the development of a classical Fabry phenotype but induces a specific cardiac variant of Fabry disease mimicking nonobstructive hypertrophic cardiomyopathy. The lack of prominent noncardiac impairment leads to a significant delay in diagnosis and Fabry-specific therapy.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease.