Cdc2/细胞周期蛋白B1的异常激活参与了小鼠Niemann-Pick病C型细胞骨架病理的启动。

Li Ba, Zhi-Jun Li, Bi-Tao Bu, Wei Wang, Min Zhang
{"title":"Cdc2/细胞周期蛋白B1的异常激活参与了小鼠Niemann-Pick病C型细胞骨架病理的启动。","authors":"Li Ba,&nbsp;Zhi-Jun Li,&nbsp;Bi-Tao Bu,&nbsp;Wei Wang,&nbsp;Min Zhang","doi":"10.1007/s11596-017-1796-7","DOIUrl":null,"url":null,"abstract":"<p><p>Niemann-Pick disease type C (NPC) is a fatal, neurovisceral lipid storage disease, neuropathologically characterized by cytoplasmic sequestration of glycolipids in neurons, progressive neuronal loss, neurofibrillary tangles (NFTs) formation, and axonal spheroids (AS). Cytoskeletal pathology including accumulation of hyperphosphorylated cytoskeletal proteins is a neuropathological hallmark of the mouse model of NPC (npc mice). With a goal of elucidating the mechanisms underlying the lesion formation, we investigated the temporal and spatial characteristics of cytoskeletal lesions and the roles of cdc2, cdk4, and cdk5 in lesion formation in young npc mice. Cytoskeletal lesions were detectable in npc mice at three weeks of age. Importantly, concomitant activation of cdc2/cyclin B1 kinase and accumulation of a subsequently generated cohort of phospho-epitopes were detected. The activation of cdk4/cyclin D1 and cdk5/p25 kinases was observed during the fourth week of life in npc mice, and this activation contributed to the lesion formation. We concluded that the progression of cytoskeletal pathology in npc mice older than four weeks is accelerated by the cumulative effect of cdc2, cdk4, and cdk5 activation. Furthermore, cdc2/cyclin B1 may act as a key initial player one week earlier. Targeting cell cycle activation may be beneficial to slow down the NPC pathogenesis.</p>","PeriodicalId":15925,"journal":{"name":"Journal of Huazhong University of Science and Technology [Medical Sciences]","volume":"37 5","pages":"732-739"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11596-017-1796-7","citationCount":"1","resultStr":"{\"title\":\"Aberrant activation of Cdc2/cyclin B1 is involved in initiation of cytoskeletal pathology in murine Niemann-Pick disease type C.\",\"authors\":\"Li Ba,&nbsp;Zhi-Jun Li,&nbsp;Bi-Tao Bu,&nbsp;Wei Wang,&nbsp;Min Zhang\",\"doi\":\"10.1007/s11596-017-1796-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Niemann-Pick disease type C (NPC) is a fatal, neurovisceral lipid storage disease, neuropathologically characterized by cytoplasmic sequestration of glycolipids in neurons, progressive neuronal loss, neurofibrillary tangles (NFTs) formation, and axonal spheroids (AS). Cytoskeletal pathology including accumulation of hyperphosphorylated cytoskeletal proteins is a neuropathological hallmark of the mouse model of NPC (npc mice). With a goal of elucidating the mechanisms underlying the lesion formation, we investigated the temporal and spatial characteristics of cytoskeletal lesions and the roles of cdc2, cdk4, and cdk5 in lesion formation in young npc mice. Cytoskeletal lesions were detectable in npc mice at three weeks of age. Importantly, concomitant activation of cdc2/cyclin B1 kinase and accumulation of a subsequently generated cohort of phospho-epitopes were detected. The activation of cdk4/cyclin D1 and cdk5/p25 kinases was observed during the fourth week of life in npc mice, and this activation contributed to the lesion formation. We concluded that the progression of cytoskeletal pathology in npc mice older than four weeks is accelerated by the cumulative effect of cdc2, cdk4, and cdk5 activation. Furthermore, cdc2/cyclin B1 may act as a key initial player one week earlier. Targeting cell cycle activation may be beneficial to slow down the NPC pathogenesis.</p>\",\"PeriodicalId\":15925,\"journal\":{\"name\":\"Journal of Huazhong University of Science and Technology [Medical Sciences]\",\"volume\":\"37 5\",\"pages\":\"732-739\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11596-017-1796-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Huazhong University of Science and Technology [Medical Sciences]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11596-017-1796-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Huazhong University of Science and Technology [Medical Sciences]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11596-017-1796-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/20 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

尼曼-皮克病C型(NPC)是一种致死性神经内脏脂质储存疾病,其神经病理学特征为神经元内糖脂质的胞质隔离、进行性神经元丢失、神经原纤维缠结(nft)形成和轴突球体(AS)。细胞骨架病理包括过度磷酸化的细胞骨架蛋白的积累是鼻咽癌小鼠模型的一个神经病理学标志。为了阐明病变形成的机制,我们研究了细胞骨架病变的时间和空间特征,以及cdc2、cdk4和cdk5在年轻npc小鼠病变形成中的作用。在三周龄的npc小鼠中可以检测到细胞骨架病变。重要的是,检测到cdc2/cyclin B1激酶的伴随激活和随后产生的磷酸化表位群的积累。cdk4/cyclin D1和cdk5/p25激酶在npc小鼠生命的第四周被激活,这种激活有助于病变的形成。我们的结论是,cdc2、cdk4和cdk5激活的累积效应加速了4周以上npc小鼠细胞骨架病理的进展。此外,cdc2/cyclin B1可能在一周前就起关键的初始作用。靶向细胞周期激活可能有助于减缓鼻咽癌的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aberrant activation of Cdc2/cyclin B1 is involved in initiation of cytoskeletal pathology in murine Niemann-Pick disease type C.

Niemann-Pick disease type C (NPC) is a fatal, neurovisceral lipid storage disease, neuropathologically characterized by cytoplasmic sequestration of glycolipids in neurons, progressive neuronal loss, neurofibrillary tangles (NFTs) formation, and axonal spheroids (AS). Cytoskeletal pathology including accumulation of hyperphosphorylated cytoskeletal proteins is a neuropathological hallmark of the mouse model of NPC (npc mice). With a goal of elucidating the mechanisms underlying the lesion formation, we investigated the temporal and spatial characteristics of cytoskeletal lesions and the roles of cdc2, cdk4, and cdk5 in lesion formation in young npc mice. Cytoskeletal lesions were detectable in npc mice at three weeks of age. Importantly, concomitant activation of cdc2/cyclin B1 kinase and accumulation of a subsequently generated cohort of phospho-epitopes were detected. The activation of cdk4/cyclin D1 and cdk5/p25 kinases was observed during the fourth week of life in npc mice, and this activation contributed to the lesion formation. We concluded that the progression of cytoskeletal pathology in npc mice older than four weeks is accelerated by the cumulative effect of cdc2, cdk4, and cdk5 activation. Furthermore, cdc2/cyclin B1 may act as a key initial player one week earlier. Targeting cell cycle activation may be beneficial to slow down the NPC pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.08
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊最新文献
A modified surgical approach of hepatopancreatoduodenectomy for advanced gallbladder cancer: Report of two cases and literature review. Risk factors for acute kidney injury after orthotopic liver transplantation: A single-center data analysis. Efficacy of EGFR tyrosine kinase inhibitors in non-small cell lung cancer patients harboring different types of EGFR mutations: A retrospective analysis. Look into hepatic progenitor cell associated trait: Histological heterogeneity of hepatitis B-related combined hepatocellular-cholangiocarcinoma. Knockdown of GRHL3 inhibits activities and induces cell cycle arrest and apoptosis of human colorectal cancer cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1