{"title":"雷公藤红素减轻与脂多糖诱导的大鼠急性呼吸窘迫综合征(ARDS)相关的损伤。","authors":"Yongjun Wei, Yu Wang","doi":"10.1080/1547691X.2017.1394933","DOIUrl":null,"url":null,"abstract":"<p><p>Celastrol, a constituent from a traditional Chinese medicinal herb belonging to the family Celastraceae, has been shown to impart anti-inflammatory properties, in part, by inhibiting NF-κB activity and related induction of pro-inflammatory cytokine formation/release. The present study investigated the effects of celastrol in an animal model of acute respiratory distress syndrome (ARDS) induced by intratracheal administration of lipopolysaccharides (LPSs). Celastrol pre-treatment groups received celastrol by intraperitoneal injection on seven consecutive days before LPS treatment. In rats evaluated 24 h after LPS administration, oxygenation indices and lung injury were measured, as were levels of inflammatory cells and cytokines in isolated bronchoalveolar lavage fluid (BALF). Lung tissue expression of proteins involved in NF-κB and ERK/MAPK pathways were measured by Western blot analyses. Celastrol pre-treatments appeared to attenuate LPS-induced lung injury and inflammatory responses in the rats, including decreases in inducible aggregation\\infiltration of inflammatory cells and production/release of pro-inflammatory cytokines into the lung airways. Celastrol appeared to also inhibit NF-κB activation, but had no effect on ERK/MAPK pathways in the LPS-induced ARDS. The results here thus indicated that celastrol pre-treatment could impart protective effects against LPS-induced ARDS, and that these effects may be occurring through an inhibition of induction of NF-κB signaling pathways.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"228-234"},"PeriodicalIF":2.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1394933","citationCount":"15","resultStr":"{\"title\":\"Celastrol attenuates impairments associated with lipopolysaccharide-induced acute respiratory distress syndrome (ARDS) in rats.\",\"authors\":\"Yongjun Wei, Yu Wang\",\"doi\":\"10.1080/1547691X.2017.1394933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Celastrol, a constituent from a traditional Chinese medicinal herb belonging to the family Celastraceae, has been shown to impart anti-inflammatory properties, in part, by inhibiting NF-κB activity and related induction of pro-inflammatory cytokine formation/release. The present study investigated the effects of celastrol in an animal model of acute respiratory distress syndrome (ARDS) induced by intratracheal administration of lipopolysaccharides (LPSs). Celastrol pre-treatment groups received celastrol by intraperitoneal injection on seven consecutive days before LPS treatment. In rats evaluated 24 h after LPS administration, oxygenation indices and lung injury were measured, as were levels of inflammatory cells and cytokines in isolated bronchoalveolar lavage fluid (BALF). Lung tissue expression of proteins involved in NF-κB and ERK/MAPK pathways were measured by Western blot analyses. Celastrol pre-treatments appeared to attenuate LPS-induced lung injury and inflammatory responses in the rats, including decreases in inducible aggregation\\\\infiltration of inflammatory cells and production/release of pro-inflammatory cytokines into the lung airways. Celastrol appeared to also inhibit NF-κB activation, but had no effect on ERK/MAPK pathways in the LPS-induced ARDS. The results here thus indicated that celastrol pre-treatment could impart protective effects against LPS-induced ARDS, and that these effects may be occurring through an inhibition of induction of NF-κB signaling pathways.</p>\",\"PeriodicalId\":16073,\"journal\":{\"name\":\"Journal of Immunotoxicology\",\"volume\":\"14 1\",\"pages\":\"228-234\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1547691X.2017.1394933\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Immunotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1547691X.2017.1394933\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1547691X.2017.1394933","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Celastrol attenuates impairments associated with lipopolysaccharide-induced acute respiratory distress syndrome (ARDS) in rats.
Celastrol, a constituent from a traditional Chinese medicinal herb belonging to the family Celastraceae, has been shown to impart anti-inflammatory properties, in part, by inhibiting NF-κB activity and related induction of pro-inflammatory cytokine formation/release. The present study investigated the effects of celastrol in an animal model of acute respiratory distress syndrome (ARDS) induced by intratracheal administration of lipopolysaccharides (LPSs). Celastrol pre-treatment groups received celastrol by intraperitoneal injection on seven consecutive days before LPS treatment. In rats evaluated 24 h after LPS administration, oxygenation indices and lung injury were measured, as were levels of inflammatory cells and cytokines in isolated bronchoalveolar lavage fluid (BALF). Lung tissue expression of proteins involved in NF-κB and ERK/MAPK pathways were measured by Western blot analyses. Celastrol pre-treatments appeared to attenuate LPS-induced lung injury and inflammatory responses in the rats, including decreases in inducible aggregation\infiltration of inflammatory cells and production/release of pro-inflammatory cytokines into the lung airways. Celastrol appeared to also inhibit NF-κB activation, but had no effect on ERK/MAPK pathways in the LPS-induced ARDS. The results here thus indicated that celastrol pre-treatment could impart protective effects against LPS-induced ARDS, and that these effects may be occurring through an inhibition of induction of NF-κB signaling pathways.
期刊介绍:
The Journal of Immunotoxicology is an open access, peer-reviewed journal that provides a needed singular forum for the international community of immunotoxicologists, immunologists, and toxicologists working in academia, government, consulting, and industry to both publish their original research and be made aware of the research findings of their colleagues in a timely manner. Research from many subdisciplines are presented in the journal, including the areas of molecular, developmental, pulmonary, regulatory, nutritional, mechanistic, wildlife, and environmental immunotoxicology, immunology, and toxicology. Original research articles as well as timely comprehensive reviews are published.