Christopher McMahan, James Baurley, William Bridges, Chase Joyner, Muhamad Fitra Kacamarga, Robert Lund, Carissa Pardamean, Bens Pardamean
{"title":"一个贝叶斯层次模型,用于识别显著的多基因效应,同时控制混淆和重复测量。","authors":"Christopher McMahan, James Baurley, William Bridges, Chase Joyner, Muhamad Fitra Kacamarga, Robert Lund, Carissa Pardamean, Bens Pardamean","doi":"10.1515/sagmb-2017-0044","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic studies of plants often seek to identify genetic factors associated with desirable traits. The process of evaluating genetic markers one by one (i.e. a marginal analysis) may not identify important polygenic and environmental effects. Further, confounding due to growing conditions/factors and genetic similarities among plant varieties may influence conclusions. When developing new plant varieties to optimize yield or thrive in future adverse conditions (e.g. flood, drought), scientists seek a complete understanding of how the factors influence desirable traits. Motivated by a study design that measures rice yield across different seasons, fields, and plant varieties in Indonesia, we develop a regression method that identifies significant genomic factors, while simultaneously controlling for field factors and genetic similarities in the plant varieties. Our approach develops a Bayesian maximum a posteriori probability (MAP) estimator under a generalized double Pareto shrinkage prior. Through a hierarchical representation of the proposed model, a novel and computationally efficient expectation-maximization (EM) algorithm is developed for variable selection and estimation. The performance of the proposed approach is demonstrated through simulation and is used to analyze rice yields from a pilot study conducted by the Indonesian Center for Rice Research.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"16 5-6","pages":"407-419"},"PeriodicalIF":0.8000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2017-0044","citationCount":"12","resultStr":"{\"title\":\"A Bayesian hierarchical model for identifying significant polygenic effects while controlling for confounding and repeated measures.\",\"authors\":\"Christopher McMahan, James Baurley, William Bridges, Chase Joyner, Muhamad Fitra Kacamarga, Robert Lund, Carissa Pardamean, Bens Pardamean\",\"doi\":\"10.1515/sagmb-2017-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic studies of plants often seek to identify genetic factors associated with desirable traits. The process of evaluating genetic markers one by one (i.e. a marginal analysis) may not identify important polygenic and environmental effects. Further, confounding due to growing conditions/factors and genetic similarities among plant varieties may influence conclusions. When developing new plant varieties to optimize yield or thrive in future adverse conditions (e.g. flood, drought), scientists seek a complete understanding of how the factors influence desirable traits. Motivated by a study design that measures rice yield across different seasons, fields, and plant varieties in Indonesia, we develop a regression method that identifies significant genomic factors, while simultaneously controlling for field factors and genetic similarities in the plant varieties. Our approach develops a Bayesian maximum a posteriori probability (MAP) estimator under a generalized double Pareto shrinkage prior. Through a hierarchical representation of the proposed model, a novel and computationally efficient expectation-maximization (EM) algorithm is developed for variable selection and estimation. The performance of the proposed approach is demonstrated through simulation and is used to analyze rice yields from a pilot study conducted by the Indonesian Center for Rice Research.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"16 5-6\",\"pages\":\"407-419\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2017-0044\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2017-0044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2017-0044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Bayesian hierarchical model for identifying significant polygenic effects while controlling for confounding and repeated measures.
Genomic studies of plants often seek to identify genetic factors associated with desirable traits. The process of evaluating genetic markers one by one (i.e. a marginal analysis) may not identify important polygenic and environmental effects. Further, confounding due to growing conditions/factors and genetic similarities among plant varieties may influence conclusions. When developing new plant varieties to optimize yield or thrive in future adverse conditions (e.g. flood, drought), scientists seek a complete understanding of how the factors influence desirable traits. Motivated by a study design that measures rice yield across different seasons, fields, and plant varieties in Indonesia, we develop a regression method that identifies significant genomic factors, while simultaneously controlling for field factors and genetic similarities in the plant varieties. Our approach develops a Bayesian maximum a posteriori probability (MAP) estimator under a generalized double Pareto shrinkage prior. Through a hierarchical representation of the proposed model, a novel and computationally efficient expectation-maximization (EM) algorithm is developed for variable selection and estimation. The performance of the proposed approach is demonstrated through simulation and is used to analyze rice yields from a pilot study conducted by the Indonesian Center for Rice Research.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.