一个贝叶斯层次模型,用于识别显著的多基因效应,同时控制混淆和重复测量。

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Statistical Applications in Genetics and Molecular Biology Pub Date : 2017-11-27 DOI:10.1515/sagmb-2017-0044
Christopher McMahan, James Baurley, William Bridges, Chase Joyner, Muhamad Fitra Kacamarga, Robert Lund, Carissa Pardamean, Bens Pardamean
{"title":"一个贝叶斯层次模型,用于识别显著的多基因效应,同时控制混淆和重复测量。","authors":"Christopher McMahan,&nbsp;James Baurley,&nbsp;William Bridges,&nbsp;Chase Joyner,&nbsp;Muhamad Fitra Kacamarga,&nbsp;Robert Lund,&nbsp;Carissa Pardamean,&nbsp;Bens Pardamean","doi":"10.1515/sagmb-2017-0044","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic studies of plants often seek to identify genetic factors associated with desirable traits. The process of evaluating genetic markers one by one (i.e. a marginal analysis) may not identify important polygenic and environmental effects. Further, confounding due to growing conditions/factors and genetic similarities among plant varieties may influence conclusions. When developing new plant varieties to optimize yield or thrive in future adverse conditions (e.g. flood, drought), scientists seek a complete understanding of how the factors influence desirable traits. Motivated by a study design that measures rice yield across different seasons, fields, and plant varieties in Indonesia, we develop a regression method that identifies significant genomic factors, while simultaneously controlling for field factors and genetic similarities in the plant varieties. Our approach develops a Bayesian maximum a posteriori probability (MAP) estimator under a generalized double Pareto shrinkage prior. Through a hierarchical representation of the proposed model, a novel and computationally efficient expectation-maximization (EM) algorithm is developed for variable selection and estimation. The performance of the proposed approach is demonstrated through simulation and is used to analyze rice yields from a pilot study conducted by the Indonesian Center for Rice Research.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"16 5-6","pages":"407-419"},"PeriodicalIF":0.8000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2017-0044","citationCount":"12","resultStr":"{\"title\":\"A Bayesian hierarchical model for identifying significant polygenic effects while controlling for confounding and repeated measures.\",\"authors\":\"Christopher McMahan,&nbsp;James Baurley,&nbsp;William Bridges,&nbsp;Chase Joyner,&nbsp;Muhamad Fitra Kacamarga,&nbsp;Robert Lund,&nbsp;Carissa Pardamean,&nbsp;Bens Pardamean\",\"doi\":\"10.1515/sagmb-2017-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic studies of plants often seek to identify genetic factors associated with desirable traits. The process of evaluating genetic markers one by one (i.e. a marginal analysis) may not identify important polygenic and environmental effects. Further, confounding due to growing conditions/factors and genetic similarities among plant varieties may influence conclusions. When developing new plant varieties to optimize yield or thrive in future adverse conditions (e.g. flood, drought), scientists seek a complete understanding of how the factors influence desirable traits. Motivated by a study design that measures rice yield across different seasons, fields, and plant varieties in Indonesia, we develop a regression method that identifies significant genomic factors, while simultaneously controlling for field factors and genetic similarities in the plant varieties. Our approach develops a Bayesian maximum a posteriori probability (MAP) estimator under a generalized double Pareto shrinkage prior. Through a hierarchical representation of the proposed model, a novel and computationally efficient expectation-maximization (EM) algorithm is developed for variable selection and estimation. The performance of the proposed approach is demonstrated through simulation and is used to analyze rice yields from a pilot study conducted by the Indonesian Center for Rice Research.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"16 5-6\",\"pages\":\"407-419\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2017-0044\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2017-0044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2017-0044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 12

摘要

植物基因组研究通常寻求确定与理想性状相关的遗传因素。逐个评估遗传标记的过程(即边际分析)可能无法识别重要的多基因和环境影响。此外,由于生长条件/因素和植物品种之间的遗传相似性造成的混淆可能会影响结论。在开发新的植物品种以优化产量或在未来的不利条件下(如洪水、干旱)茁壮成长时,科学家们寻求对这些因素如何影响理想性状的全面了解。受测量印度尼西亚不同季节、田地和植物品种的水稻产量的研究设计的启发,我们开发了一种回归方法,该方法可以识别重要的基因组因素,同时控制田地因素和植物品种的遗传相似性。我们的方法开发了广义双帕累托收缩先验下的贝叶斯极大后验概率(MAP)估计。通过对所提模型的分层表示,提出了一种新的、计算效率高的期望最大化(EM)算法,用于变量选择和估计。通过模拟证明了所提出方法的性能,并用于分析印度尼西亚水稻研究中心进行的一项试点研究的水稻产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian hierarchical model for identifying significant polygenic effects while controlling for confounding and repeated measures.

Genomic studies of plants often seek to identify genetic factors associated with desirable traits. The process of evaluating genetic markers one by one (i.e. a marginal analysis) may not identify important polygenic and environmental effects. Further, confounding due to growing conditions/factors and genetic similarities among plant varieties may influence conclusions. When developing new plant varieties to optimize yield or thrive in future adverse conditions (e.g. flood, drought), scientists seek a complete understanding of how the factors influence desirable traits. Motivated by a study design that measures rice yield across different seasons, fields, and plant varieties in Indonesia, we develop a regression method that identifies significant genomic factors, while simultaneously controlling for field factors and genetic similarities in the plant varieties. Our approach develops a Bayesian maximum a posteriori probability (MAP) estimator under a generalized double Pareto shrinkage prior. Through a hierarchical representation of the proposed model, a novel and computationally efficient expectation-maximization (EM) algorithm is developed for variable selection and estimation. The performance of the proposed approach is demonstrated through simulation and is used to analyze rice yields from a pilot study conducted by the Indonesian Center for Rice Research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
期刊最新文献
When is the allele-sharing dissimilarity between two populations exceeded by the allele-sharing dissimilarity of a population with itself? Sparse latent factor regression models for genome-wide and epigenome-wide association studies Low variability in the underlying cellular landscape adversely affects the performance of interaction-based approaches for conducting cell-specific analyses of DNA methylation in bulk samples. AdaReg: data adaptive robust estimation in linear regression with application in GTEx gene expressions. Collocation based training of neural ordinary differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1