{"title":"NF-κB信号通路和自噬调节成骨细胞分化的机制。","authors":"Han Qin, Hong-Zhi Xu, Yong-Qing Gong","doi":"10.1080/09687688.2017.1400601","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of the present work was to investigate a possible mechanism of NF-κB signaling pathway and autophagy in the regulation of osteoblast differentiation, and provide experimental basis for the study of tooth eruption disorder.</p><p><strong>Methods: </strong>Mouse osteoblast-like (MC3T3-E1) cells were inoculated with a cell density of 70%. According to the grouping experimental design, Western blot and monodansylcadaverine (MDC) detection were conducted after dosing for 24 h. The cells were divided into the following five groups: blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group; 25 µg/mL SN50 group and 50 µg/mL SN50 group.</p><p><strong>Results: </strong>Western blot analysis revealed that the expression of LC3 protein was present in the blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group and 50 µg/mL SN50 group, with no significant differences among these groups. However, the expression of LC3 protein was significantly lower in the 25 µg/mL SN50 group. MDC detection showed that, in the blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group and 50 µg/mL SN50 group, there was obvious green fluorescence in the cytoplasm of the osteoblasts. However, in the 25 µg/mL SN50 group, it was found that there were significantly fewer green fluorescent particles.</p><p><strong>Conclusion: </strong>The osteoblast itself had a strong function of autophagy. The appropriate concentration of SN50 in blocking the NF-κB pathway of the osteoblast was associated with the obvious inhibition of autophagy. However, the relationship between NF-κB signaling pathway and autophagy in the process of tooth eruption requires further study.</p>","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"33 6-8","pages":"138-144"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09687688.2017.1400601","citationCount":"4","resultStr":"{\"title\":\"Mechanism of NF-κB signaling pathway and autophagy in the regulation of osteoblast differentiation.\",\"authors\":\"Han Qin, Hong-Zhi Xu, Yong-Qing Gong\",\"doi\":\"10.1080/09687688.2017.1400601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The objective of the present work was to investigate a possible mechanism of NF-κB signaling pathway and autophagy in the regulation of osteoblast differentiation, and provide experimental basis for the study of tooth eruption disorder.</p><p><strong>Methods: </strong>Mouse osteoblast-like (MC3T3-E1) cells were inoculated with a cell density of 70%. According to the grouping experimental design, Western blot and monodansylcadaverine (MDC) detection were conducted after dosing for 24 h. The cells were divided into the following five groups: blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group; 25 µg/mL SN50 group and 50 µg/mL SN50 group.</p><p><strong>Results: </strong>Western blot analysis revealed that the expression of LC3 protein was present in the blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group and 50 µg/mL SN50 group, with no significant differences among these groups. However, the expression of LC3 protein was significantly lower in the 25 µg/mL SN50 group. MDC detection showed that, in the blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group and 50 µg/mL SN50 group, there was obvious green fluorescence in the cytoplasm of the osteoblasts. However, in the 25 µg/mL SN50 group, it was found that there were significantly fewer green fluorescent particles.</p><p><strong>Conclusion: </strong>The osteoblast itself had a strong function of autophagy. The appropriate concentration of SN50 in blocking the NF-κB pathway of the osteoblast was associated with the obvious inhibition of autophagy. However, the relationship between NF-κB signaling pathway and autophagy in the process of tooth eruption requires further study.</p>\",\"PeriodicalId\":18858,\"journal\":{\"name\":\"Molecular Membrane Biology\",\"volume\":\"33 6-8\",\"pages\":\"138-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09687688.2017.1400601\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Membrane Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09687688.2017.1400601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09687688.2017.1400601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Mechanism of NF-κB signaling pathway and autophagy in the regulation of osteoblast differentiation.
Objective: The objective of the present work was to investigate a possible mechanism of NF-κB signaling pathway and autophagy in the regulation of osteoblast differentiation, and provide experimental basis for the study of tooth eruption disorder.
Methods: Mouse osteoblast-like (MC3T3-E1) cells were inoculated with a cell density of 70%. According to the grouping experimental design, Western blot and monodansylcadaverine (MDC) detection were conducted after dosing for 24 h. The cells were divided into the following five groups: blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group; 25 µg/mL SN50 group and 50 µg/mL SN50 group.
Results: Western blot analysis revealed that the expression of LC3 protein was present in the blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group and 50 µg/mL SN50 group, with no significant differences among these groups. However, the expression of LC3 protein was significantly lower in the 25 µg/mL SN50 group. MDC detection showed that, in the blank control group; 6.25 µg/mL SN50 group; 12.5 µg/mL SN50 group and 50 µg/mL SN50 group, there was obvious green fluorescence in the cytoplasm of the osteoblasts. However, in the 25 µg/mL SN50 group, it was found that there were significantly fewer green fluorescent particles.
Conclusion: The osteoblast itself had a strong function of autophagy. The appropriate concentration of SN50 in blocking the NF-κB pathway of the osteoblast was associated with the obvious inhibition of autophagy. However, the relationship between NF-κB signaling pathway and autophagy in the process of tooth eruption requires further study.
期刊介绍:
Cessation.
Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas:
• Membrane receptors and signalling
• Membrane transporters, pores and channels
• Synthesis and structure of membrane proteins
• Membrane translocation and targeting
• Lipid organisation and asymmetry
• Model membranes
• Membrane trafficking
• Cytoskeletal and extracellular membrane interactions
• Cell adhesion and intercellular interactions
• Molecular dynamics and molecular modelling of membranes.
• Antimicrobial peptides.