一种用于疾病相关亚宏基因组鉴定的并行减法组装方法。

Wontack Han, Mingjie Wang, Yuzhen Ye
{"title":"一种用于疾病相关亚宏基因组鉴定的并行减法组装方法。","authors":"Wontack Han,&nbsp;Mingjie Wang,&nbsp;Yuzhen Ye","doi":"10.1007/978-3-319-56970-3_2","DOIUrl":null,"url":null,"abstract":"<p><p>Comparative analysis of metagenomes can be used to detect sub-metagenomes (species or gene sets) that are associated with specific phenotypes (e.g., host status). The typical workflow is to assemble and annotate metagenomic datasets individually or as a whole, followed by statistical tests to identify differentially abundant species/genes. We previously developed subtractive assembly (SA), a <i>de novo</i> assembly approach for comparative metagenomics that first detects differential reads that distinguish between two groups of metagenomes and then only assembles these reads. Application of SA to type 2 diabetes (T2D) microbiomes revealed new microbial genes associated with T2D. Here we further developed a Concurrent Subtractive Assembly (CoSA) approach, which uses a Wilcoxon rank-sum (WRS) test to detect k-mers that are differentially abundant between two groups of microbiomes (by contrast, SA only checks ratios of k-mer counts in one pooled sample versus the other). It then uses identified differential k-mers to extract reads that are likely sequenced from the sub-metagenome with consistent abundance differences between the groups of microbiomes. Further, CoSA attempts to reduce the redundancy of reads (from abundant common species) by excluding reads containing abundant k-mers. Using simulated microbiome datasets and T2D datasets, we show that CoSA achieves strikingly better performance in detecting consistent changes than SA does, and it enables the detection and assembly of genomes and genes with minor abundance difference. A SVM classifier built upon the microbial genes detected by CoSA from the T2D datasets can accurately discriminates patients from healthy controls, with an AUC of 0.94 (10-fold cross-validation), and therefore these differential genes (207 genes) may serve as potential microbial marker genes for T2D.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"2017 ","pages":"18-33"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_2","citationCount":"8","resultStr":"{\"title\":\"A concurrent subtractive assembly approach for identification of disease associated sub-metagenomes.\",\"authors\":\"Wontack Han,&nbsp;Mingjie Wang,&nbsp;Yuzhen Ye\",\"doi\":\"10.1007/978-3-319-56970-3_2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Comparative analysis of metagenomes can be used to detect sub-metagenomes (species or gene sets) that are associated with specific phenotypes (e.g., host status). The typical workflow is to assemble and annotate metagenomic datasets individually or as a whole, followed by statistical tests to identify differentially abundant species/genes. We previously developed subtractive assembly (SA), a <i>de novo</i> assembly approach for comparative metagenomics that first detects differential reads that distinguish between two groups of metagenomes and then only assembles these reads. Application of SA to type 2 diabetes (T2D) microbiomes revealed new microbial genes associated with T2D. Here we further developed a Concurrent Subtractive Assembly (CoSA) approach, which uses a Wilcoxon rank-sum (WRS) test to detect k-mers that are differentially abundant between two groups of microbiomes (by contrast, SA only checks ratios of k-mer counts in one pooled sample versus the other). It then uses identified differential k-mers to extract reads that are likely sequenced from the sub-metagenome with consistent abundance differences between the groups of microbiomes. Further, CoSA attempts to reduce the redundancy of reads (from abundant common species) by excluding reads containing abundant k-mers. Using simulated microbiome datasets and T2D datasets, we show that CoSA achieves strikingly better performance in detecting consistent changes than SA does, and it enables the detection and assembly of genomes and genes with minor abundance difference. A SVM classifier built upon the microbial genes detected by CoSA from the T2D datasets can accurately discriminates patients from healthy controls, with an AUC of 0.94 (10-fold cross-validation), and therefore these differential genes (207 genes) may serve as potential microbial marker genes for T2D.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"2017 \",\"pages\":\"18-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_2\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-56970-3_2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-56970-3_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

宏基因组的比较分析可用于检测与特定表型(例如,宿主状态)相关的亚宏基因组(物种或基因集)。典型的工作流程是单独或整体组装和注释宏基因组数据集,然后进行统计测试以识别差异丰富的物种/基因。我们之前开发了减法组装(SA),这是一种用于比较宏基因组学的全新组装方法,首先检测区分两组宏基因组的差异读取,然后仅组装这些读取。SA在2型糖尿病(T2D)微生物组中的应用揭示了与T2D相关的新的微生物基因。在这里,我们进一步开发了一种并发减法组装(CoSA)方法,该方法使用Wilcoxon秩和(WRS)测试来检测两组微生物组之间差异丰富的k-mer(相比之下,SA仅检查一个汇集样本中k-mer计数与另一个样本的比率)。然后,它使用鉴定的差异k-mers提取可能从亚宏基因组测序的读数,这些读数在微生物组之间具有一致的丰度差异。此外,CoSA试图通过排除含有丰富k-mers的读取来减少读取(来自丰富的常见物种)的冗余。使用模拟微生物组数据集和T2D数据集,我们发现CoSA在检测一致性变化方面的性能明显优于SA,并且它可以检测和组装具有较小丰度差异的基因组和基因。基于CoSA从T2D数据集中检测到的微生物基因构建的SVM分类器可以准确区分患者和健康对照,AUC为0.94(10倍交叉验证),因此这些差异基因(207个基因)可能作为T2D的潜在微生物标记基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A concurrent subtractive assembly approach for identification of disease associated sub-metagenomes.

Comparative analysis of metagenomes can be used to detect sub-metagenomes (species or gene sets) that are associated with specific phenotypes (e.g., host status). The typical workflow is to assemble and annotate metagenomic datasets individually or as a whole, followed by statistical tests to identify differentially abundant species/genes. We previously developed subtractive assembly (SA), a de novo assembly approach for comparative metagenomics that first detects differential reads that distinguish between two groups of metagenomes and then only assembles these reads. Application of SA to type 2 diabetes (T2D) microbiomes revealed new microbial genes associated with T2D. Here we further developed a Concurrent Subtractive Assembly (CoSA) approach, which uses a Wilcoxon rank-sum (WRS) test to detect k-mers that are differentially abundant between two groups of microbiomes (by contrast, SA only checks ratios of k-mer counts in one pooled sample versus the other). It then uses identified differential k-mers to extract reads that are likely sequenced from the sub-metagenome with consistent abundance differences between the groups of microbiomes. Further, CoSA attempts to reduce the redundancy of reads (from abundant common species) by excluding reads containing abundant k-mers. Using simulated microbiome datasets and T2D datasets, we show that CoSA achieves strikingly better performance in detecting consistent changes than SA does, and it enables the detection and assembly of genomes and genes with minor abundance difference. A SVM classifier built upon the microbial genes detected by CoSA from the T2D datasets can accurately discriminates patients from healthy controls, with an AUC of 0.94 (10-fold cross-validation), and therefore these differential genes (207 genes) may serve as potential microbial marker genes for T2D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1