一种快速自动检测脑损伤的方法。

Subhranil Koley, Chandan Chakraborty, Caterina Mainero, Bruce Fischl, Iman Aganj
{"title":"一种快速自动检测脑损伤的方法。","authors":"Subhranil Koley,&nbsp;Chandan Chakraborty,&nbsp;Caterina Mainero,&nbsp;Bruce Fischl,&nbsp;Iman Aganj","doi":"10.1007/978-3-319-55524-9_6","DOIUrl":null,"url":null,"abstract":"<p><p>Template matching is a popular approach to computer-aided detection of brain lesions from magnetic resonance (MR) images. The outcomes are often sufficient for localizing lesions and assisting clinicians in diagnosis. However, processing large MR volumes with three-dimensional (3D) templates is demanding in terms of computational resources, hence the importance of the reduction of computational complexity of template matching, particularly in situations in which time is crucial (e.g. emergent stroke). In view of this, we make use of 3D Gaussian templates with varying radii and propose a new method to compute the normalized cross-correlation coefficient as a similarity metric between the MR volume and the template to detect brain lesions. Contrary to the conventional fast Fourier transform (FFT) based approach, whose runtime grows as <i>O</i>(<i>N</i> log<i>N</i>) with the number of voxels, the proposed method computes the cross-correlation in <i>O</i>(<i>N</i>). We show through our experiments that the proposed method outperforms the FFT approach in terms of computational time, and retains comparable accuracy.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"10154 ","pages":"52-61"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-55524-9_6","citationCount":"5","resultStr":"{\"title\":\"A Fast Approach to Automatic Detection of Brain Lesions.\",\"authors\":\"Subhranil Koley,&nbsp;Chandan Chakraborty,&nbsp;Caterina Mainero,&nbsp;Bruce Fischl,&nbsp;Iman Aganj\",\"doi\":\"10.1007/978-3-319-55524-9_6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Template matching is a popular approach to computer-aided detection of brain lesions from magnetic resonance (MR) images. The outcomes are often sufficient for localizing lesions and assisting clinicians in diagnosis. However, processing large MR volumes with three-dimensional (3D) templates is demanding in terms of computational resources, hence the importance of the reduction of computational complexity of template matching, particularly in situations in which time is crucial (e.g. emergent stroke). In view of this, we make use of 3D Gaussian templates with varying radii and propose a new method to compute the normalized cross-correlation coefficient as a similarity metric between the MR volume and the template to detect brain lesions. Contrary to the conventional fast Fourier transform (FFT) based approach, whose runtime grows as <i>O</i>(<i>N</i> log<i>N</i>) with the number of voxels, the proposed method computes the cross-correlation in <i>O</i>(<i>N</i>). We show through our experiments that the proposed method outperforms the FFT approach in terms of computational time, and retains comparable accuracy.</p>\",\"PeriodicalId\":72455,\"journal\":{\"name\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"volume\":\"10154 \",\"pages\":\"52-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-55524-9_6\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-55524-9_6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-55524-9_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

模板匹配是从磁共振(MR)图像中计算机辅助检测脑损伤的一种流行方法。结果通常足以定位病变并协助临床医生诊断。然而,使用三维(3D)模板处理大型MR体积在计算资源方面要求很高,因此降低模板匹配的计算复杂性非常重要,特别是在时间至关重要的情况下(例如紧急笔划)。鉴于此,我们利用不同半径的三维高斯模板,提出了一种新的方法来计算归一化互相关系数作为MR体积与模板之间的相似度度量来检测脑损伤。传统的基于快速傅里叶变换(FFT)的方法的运行时间随体素数增长为O(N logN),与之相反,该方法在O(N)内计算相互关系。我们通过实验表明,所提出的方法在计算时间方面优于FFT方法,并保持相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast Approach to Automatic Detection of Brain Lesions.

Template matching is a popular approach to computer-aided detection of brain lesions from magnetic resonance (MR) images. The outcomes are often sufficient for localizing lesions and assisting clinicians in diagnosis. However, processing large MR volumes with three-dimensional (3D) templates is demanding in terms of computational resources, hence the importance of the reduction of computational complexity of template matching, particularly in situations in which time is crucial (e.g. emergent stroke). In view of this, we make use of 3D Gaussian templates with varying radii and propose a new method to compute the normalized cross-correlation coefficient as a similarity metric between the MR volume and the template to detect brain lesions. Contrary to the conventional fast Fourier transform (FFT) based approach, whose runtime grows as O(N logN) with the number of voxels, the proposed method computes the cross-correlation in O(N). We show through our experiments that the proposed method outperforms the FFT approach in terms of computational time, and retains comparable accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers Optimization of Deep Learning Based Brain Extraction in MRI for Low Resource Environments. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1