Linnea M Baudhuin, Charles Leduc, Laura J Train, Rajeswari Avula, Michelle L Kluge, Katrina E Kotzer, Peter T Lin, Michael J Ackerman, Joseph J Maleszewski
{"title":"心源性猝死临床基因组评估的技术进展:使用福尔马林固定石蜡包埋组织和干血点验证下一代遗传性心血管疾病测序板。","authors":"Linnea M Baudhuin, Charles Leduc, Laura J Train, Rajeswari Avula, Michelle L Kluge, Katrina E Kotzer, Peter T Lin, Michael J Ackerman, Joseph J Maleszewski","doi":"10.1161/CIRCGENETICS.117.001844","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postmortem genetic testing for heritable cardiovascular (CV) disorders is often lacking because ideal specimens (ie, whole blood) are not retained routinely at autopsy. Formalin-fixed paraffin-embedded tissue (FFPET) is ubiquitously collected at autopsy, but DNA quality hampers its use with traditional sequencing methods. Targeted next-generation sequencing may offer the ability to circumvent such limitations, but a method has not been previously described. The primary aim of this study was to develop and evaluate the use of FFPET for heritable CV disorders via next-generation sequencing.</p><p><strong>Methods and results: </strong>Nineteen FFPET (heart) and blood (whole blood or dried blood spot) specimens underwent targeted next-generation sequencing using a custom panel of 101 CV-associated genes. Nucleic acid yield and quality metrics were evaluated in relation to FFPET specimen age (6 months to 15 years; n=14) and specimen type (FFPET versus whole blood and dried blood spot; n=12). Four FFPET cases with a clinical phenotype of heritable CV disorder were analyzed. Accuracy and precision were 100% concordant between all sample types, with read depths >100× for most regions tested. Lower read depth, as low as 40×, was occasionally observed with FFPET and dried blood spot. High-quality DNA was obtained from FFPET samples as old as 15 years. Genomic analysis of FFPET from the 4 phenotype-positive/genotype unknown cases all revealed putative disease-causing variants.</p><p><strong>Conclusions: </strong>Similar performance characteristics were observed for next-generation sequencing of FFPET, whole blood, and dried blood spot in the evaluation of inherited CV disorders. Although blood is preferable for genetic analyses, this study offers an alternative when only FFPET is available.</p>","PeriodicalId":10277,"journal":{"name":"Circulation: Cardiovascular Genetics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.117.001844","citationCount":"20","resultStr":"{\"title\":\"Technical Advances for the Clinical Genomic Evaluation of Sudden Cardiac Death: Verification of Next-Generation Sequencing Panels for Hereditary Cardiovascular Conditions Using Formalin-Fixed Paraffin-Embedded Tissues and Dried Blood Spots.\",\"authors\":\"Linnea M Baudhuin, Charles Leduc, Laura J Train, Rajeswari Avula, Michelle L Kluge, Katrina E Kotzer, Peter T Lin, Michael J Ackerman, Joseph J Maleszewski\",\"doi\":\"10.1161/CIRCGENETICS.117.001844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Postmortem genetic testing for heritable cardiovascular (CV) disorders is often lacking because ideal specimens (ie, whole blood) are not retained routinely at autopsy. Formalin-fixed paraffin-embedded tissue (FFPET) is ubiquitously collected at autopsy, but DNA quality hampers its use with traditional sequencing methods. Targeted next-generation sequencing may offer the ability to circumvent such limitations, but a method has not been previously described. The primary aim of this study was to develop and evaluate the use of FFPET for heritable CV disorders via next-generation sequencing.</p><p><strong>Methods and results: </strong>Nineteen FFPET (heart) and blood (whole blood or dried blood spot) specimens underwent targeted next-generation sequencing using a custom panel of 101 CV-associated genes. Nucleic acid yield and quality metrics were evaluated in relation to FFPET specimen age (6 months to 15 years; n=14) and specimen type (FFPET versus whole blood and dried blood spot; n=12). Four FFPET cases with a clinical phenotype of heritable CV disorder were analyzed. Accuracy and precision were 100% concordant between all sample types, with read depths >100× for most regions tested. Lower read depth, as low as 40×, was occasionally observed with FFPET and dried blood spot. High-quality DNA was obtained from FFPET samples as old as 15 years. Genomic analysis of FFPET from the 4 phenotype-positive/genotype unknown cases all revealed putative disease-causing variants.</p><p><strong>Conclusions: </strong>Similar performance characteristics were observed for next-generation sequencing of FFPET, whole blood, and dried blood spot in the evaluation of inherited CV disorders. Although blood is preferable for genetic analyses, this study offers an alternative when only FFPET is available.</p>\",\"PeriodicalId\":10277,\"journal\":{\"name\":\"Circulation: Cardiovascular Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.117.001844\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Cardiovascular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGENETICS.117.001844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.117.001844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technical Advances for the Clinical Genomic Evaluation of Sudden Cardiac Death: Verification of Next-Generation Sequencing Panels for Hereditary Cardiovascular Conditions Using Formalin-Fixed Paraffin-Embedded Tissues and Dried Blood Spots.
Background: Postmortem genetic testing for heritable cardiovascular (CV) disorders is often lacking because ideal specimens (ie, whole blood) are not retained routinely at autopsy. Formalin-fixed paraffin-embedded tissue (FFPET) is ubiquitously collected at autopsy, but DNA quality hampers its use with traditional sequencing methods. Targeted next-generation sequencing may offer the ability to circumvent such limitations, but a method has not been previously described. The primary aim of this study was to develop and evaluate the use of FFPET for heritable CV disorders via next-generation sequencing.
Methods and results: Nineteen FFPET (heart) and blood (whole blood or dried blood spot) specimens underwent targeted next-generation sequencing using a custom panel of 101 CV-associated genes. Nucleic acid yield and quality metrics were evaluated in relation to FFPET specimen age (6 months to 15 years; n=14) and specimen type (FFPET versus whole blood and dried blood spot; n=12). Four FFPET cases with a clinical phenotype of heritable CV disorder were analyzed. Accuracy and precision were 100% concordant between all sample types, with read depths >100× for most regions tested. Lower read depth, as low as 40×, was occasionally observed with FFPET and dried blood spot. High-quality DNA was obtained from FFPET samples as old as 15 years. Genomic analysis of FFPET from the 4 phenotype-positive/genotype unknown cases all revealed putative disease-causing variants.
Conclusions: Similar performance characteristics were observed for next-generation sequencing of FFPET, whole blood, and dried blood spot in the evaluation of inherited CV disorders. Although blood is preferable for genetic analyses, this study offers an alternative when only FFPET is available.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease.