细胞内脂滴:从结构到功能。

Lipid insights Pub Date : 2017-12-13 eCollection Date: 2017-01-01 DOI:10.1177/1178635317745518
Stefano Vanni
{"title":"细胞内脂滴:从结构到功能。","authors":"Stefano Vanni","doi":"10.1177/1178635317745518","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid droplets (LDs) are unique intracellular organelles that are mainly constituted by neutral lipids (triglycerides, sterol esters). As such they serve as the main site of energy storage in the cell and they are akin to oil emulsions in water. To prevent the direct exposure of the hydrophobic neutral lipids to the aqueous environment of the cytosol, LDs are surrounded by a monolayer of phospholipids that thus behave as a natural surfactant. This interfacial structure is rather unique inside the cell, but a molecular understanding of how the LD structure modulates its functions is still lacking, mainly due to technical challenges in both experimental and computational approaches to investigate oil-in-water emulsions. Recently, we have investigated the structure of LDs using a combination of existing and newly developed computational approaches that are optimized to study oil-water interfaces.<sup>1</sup> Our simulations provide a comprehensive molecular characterization of the unique surface properties of LDs, suggesting structure-function relationship in several LD-related metabolic processes.</p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"10 ","pages":"1178635317745518"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178635317745518","citationCount":"20","resultStr":"{\"title\":\"Intracellular Lipid Droplets: From Structure to Function.\",\"authors\":\"Stefano Vanni\",\"doi\":\"10.1177/1178635317745518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipid droplets (LDs) are unique intracellular organelles that are mainly constituted by neutral lipids (triglycerides, sterol esters). As such they serve as the main site of energy storage in the cell and they are akin to oil emulsions in water. To prevent the direct exposure of the hydrophobic neutral lipids to the aqueous environment of the cytosol, LDs are surrounded by a monolayer of phospholipids that thus behave as a natural surfactant. This interfacial structure is rather unique inside the cell, but a molecular understanding of how the LD structure modulates its functions is still lacking, mainly due to technical challenges in both experimental and computational approaches to investigate oil-in-water emulsions. Recently, we have investigated the structure of LDs using a combination of existing and newly developed computational approaches that are optimized to study oil-water interfaces.<sup>1</sup> Our simulations provide a comprehensive molecular characterization of the unique surface properties of LDs, suggesting structure-function relationship in several LD-related metabolic processes.</p>\",\"PeriodicalId\":18039,\"journal\":{\"name\":\"Lipid insights\",\"volume\":\"10 \",\"pages\":\"1178635317745518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1178635317745518\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lipid insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1178635317745518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipid insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1178635317745518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

脂滴是一种独特的细胞内细胞器,主要由中性脂质(甘油三酯、甾醇酯)组成。因此,它们是细胞中能量储存的主要场所,它们类似于水中的油乳剂。为了防止疏水中性脂直接暴露在细胞质溶胶的水环境中,ld被单层磷脂包围,因此表现为天然表面活性剂。这种界面结构在细胞内是相当独特的,但是对LD结构如何调节其功能的分子理解仍然缺乏,主要是由于研究水包油乳液的实验和计算方法的技术挑战。最近,我们结合了现有的和新开发的计算方法来研究ld的结构,这些方法经过优化,可以研究油水界面我们的模拟提供了ld独特表面特性的全面分子表征,提示了几种ld相关代谢过程中的结构-功能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intracellular Lipid Droplets: From Structure to Function.

Lipid droplets (LDs) are unique intracellular organelles that are mainly constituted by neutral lipids (triglycerides, sterol esters). As such they serve as the main site of energy storage in the cell and they are akin to oil emulsions in water. To prevent the direct exposure of the hydrophobic neutral lipids to the aqueous environment of the cytosol, LDs are surrounded by a monolayer of phospholipids that thus behave as a natural surfactant. This interfacial structure is rather unique inside the cell, but a molecular understanding of how the LD structure modulates its functions is still lacking, mainly due to technical challenges in both experimental and computational approaches to investigate oil-in-water emulsions. Recently, we have investigated the structure of LDs using a combination of existing and newly developed computational approaches that are optimized to study oil-water interfaces.1 Our simulations provide a comprehensive molecular characterization of the unique surface properties of LDs, suggesting structure-function relationship in several LD-related metabolic processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Phenylalanine on the Liquid-Expanded and Liquid-Condensed States of Phosphatidylcholine Monolayers. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details. Some Lipid Droplets Are More Equal Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells. Intracellular Lipid Droplets: From Structure to Function. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1