{"title":"转座因子在个体发生中的作用。","authors":"R N Mustafin, E K Khusnutdinova","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The article describes the role of transposable elements in the ontogenesis of eukaryotes. Adaptive and controlled transposition of mobile elements occurs at different stages of development of an organism, causing dramatic changes in the regulation of gene expression, representing a cascade of reactions inherited genome evolutionary fixed at the species level. At this cascade of reactions involved regulatory system of tissue-specific expression of proteins splice variants in connection with the role of adaptive genes mosaic structure to numerous transpositions and the interconnectedness of mechanisms their evolutionary stabilization. Important role in the transposition of mobile elements and their interaction with groups of genes play epigenetic mechanisms - DNA methylation, histone modification, the expression of non-coding RNA. The genome structures responsible for the epigenetic regulation can have a transposons origin. In contrast to the previously established hypotheses on transpositions of mobile elements in the ontogenesis as a chaotic process, causing the destabilization of genotype, with a modern viewpoint, this mechanism has a species-specific patterns, formed evolutionarily. Mechanisms of the evolutionary transformation of genomes by natural selection create a relatively stable complex regulatory epigenetic characteristics of transpositions in the process of individual development, acting among individuals of the same species. The stability of the complex genomic information regulation in ontogenesis provides a specific set of transposons. Changing this regulation set transposons can cause fatal for the development of events. Dysregulation of transposons, not involved in the developmental restructuring, can give the inheritance of these changes. The aging process is a consequence of the evolutionary relationship of species-specific features of the regulation of mobile elements in ontogenesis, aimed at continuity and continuous increase in living matter for maximum adaptability. In the overall scheme of ontogenetic development process can be described as a way to implement the established evolutionary genomic information in time by means of gradually stabilized complex interaction of regulators of transpositions of mobile elements of the genome with a differentiated pattern of gene expression and regulation of splicing variants of their products. These transpositions vary with each cell division, especially by implementing the expression of sets of genes, the products of which affect the nature of the further transposition and change of regulation in the subsequent stages of development of an organism.</p>","PeriodicalId":39939,"journal":{"name":"Uspekhi Fiziologicheskikh Nauk","volume":"47 3","pages":"70-96"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Transposable Elements in Ontogenesis.\",\"authors\":\"R N Mustafin, E K Khusnutdinova\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The article describes the role of transposable elements in the ontogenesis of eukaryotes. Adaptive and controlled transposition of mobile elements occurs at different stages of development of an organism, causing dramatic changes in the regulation of gene expression, representing a cascade of reactions inherited genome evolutionary fixed at the species level. At this cascade of reactions involved regulatory system of tissue-specific expression of proteins splice variants in connection with the role of adaptive genes mosaic structure to numerous transpositions and the interconnectedness of mechanisms their evolutionary stabilization. Important role in the transposition of mobile elements and their interaction with groups of genes play epigenetic mechanisms - DNA methylation, histone modification, the expression of non-coding RNA. The genome structures responsible for the epigenetic regulation can have a transposons origin. In contrast to the previously established hypotheses on transpositions of mobile elements in the ontogenesis as a chaotic process, causing the destabilization of genotype, with a modern viewpoint, this mechanism has a species-specific patterns, formed evolutionarily. Mechanisms of the evolutionary transformation of genomes by natural selection create a relatively stable complex regulatory epigenetic characteristics of transpositions in the process of individual development, acting among individuals of the same species. The stability of the complex genomic information regulation in ontogenesis provides a specific set of transposons. Changing this regulation set transposons can cause fatal for the development of events. Dysregulation of transposons, not involved in the developmental restructuring, can give the inheritance of these changes. The aging process is a consequence of the evolutionary relationship of species-specific features of the regulation of mobile elements in ontogenesis, aimed at continuity and continuous increase in living matter for maximum adaptability. In the overall scheme of ontogenetic development process can be described as a way to implement the established evolutionary genomic information in time by means of gradually stabilized complex interaction of regulators of transpositions of mobile elements of the genome with a differentiated pattern of gene expression and regulation of splicing variants of their products. These transpositions vary with each cell division, especially by implementing the expression of sets of genes, the products of which affect the nature of the further transposition and change of regulation in the subsequent stages of development of an organism.</p>\",\"PeriodicalId\":39939,\"journal\":{\"name\":\"Uspekhi Fiziologicheskikh Nauk\",\"volume\":\"47 3\",\"pages\":\"70-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziologicheskikh Nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziologicheskikh Nauk","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The article describes the role of transposable elements in the ontogenesis of eukaryotes. Adaptive and controlled transposition of mobile elements occurs at different stages of development of an organism, causing dramatic changes in the regulation of gene expression, representing a cascade of reactions inherited genome evolutionary fixed at the species level. At this cascade of reactions involved regulatory system of tissue-specific expression of proteins splice variants in connection with the role of adaptive genes mosaic structure to numerous transpositions and the interconnectedness of mechanisms their evolutionary stabilization. Important role in the transposition of mobile elements and their interaction with groups of genes play epigenetic mechanisms - DNA methylation, histone modification, the expression of non-coding RNA. The genome structures responsible for the epigenetic regulation can have a transposons origin. In contrast to the previously established hypotheses on transpositions of mobile elements in the ontogenesis as a chaotic process, causing the destabilization of genotype, with a modern viewpoint, this mechanism has a species-specific patterns, formed evolutionarily. Mechanisms of the evolutionary transformation of genomes by natural selection create a relatively stable complex regulatory epigenetic characteristics of transpositions in the process of individual development, acting among individuals of the same species. The stability of the complex genomic information regulation in ontogenesis provides a specific set of transposons. Changing this regulation set transposons can cause fatal for the development of events. Dysregulation of transposons, not involved in the developmental restructuring, can give the inheritance of these changes. The aging process is a consequence of the evolutionary relationship of species-specific features of the regulation of mobile elements in ontogenesis, aimed at continuity and continuous increase in living matter for maximum adaptability. In the overall scheme of ontogenetic development process can be described as a way to implement the established evolutionary genomic information in time by means of gradually stabilized complex interaction of regulators of transpositions of mobile elements of the genome with a differentiated pattern of gene expression and regulation of splicing variants of their products. These transpositions vary with each cell division, especially by implementing the expression of sets of genes, the products of which affect the nature of the further transposition and change of regulation in the subsequent stages of development of an organism.
期刊介绍:
The journal publishes reviews on various aspects of physiology and also original articles concerned with fundamental problems, based both on the data available in literature and on the experimental results obtained by the contributor.