{"title":"微生物群和哮喘。","authors":"Milena Sokolowska, Remo Frei, Nonhlanhla Lunjani, Cezmi A Akdis, Liam O'Mahony","doi":"10.1186/s40733-017-0037-y","DOIUrl":null,"url":null,"abstract":"<p><p>The mucosal immune system is in constant communication with the vast diversity of microbes present on body surfaces. The discovery of novel molecular mechanisms, which mediate host-microbe communication, have highlighted the important roles played by microbes in influencing mucosal immune responses. Dendritic cells, epithelial cells, ILCs, T regulatory cells, effector lymphocytes, NKT cells and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain- or metabolite-specific. Microbial dysbiosis in the gut and the lung is increasingly being associated with the incidence and severity of asthma. More accurate endotyping of patients with asthma may be assisted by further analysis of the composition and metabolic activity of an individual's microbiome. In addition, the efficacy of specific therapeutics may be influenced by the microbiome and novel bacterial-based therapeutics should be considered in future clinical studies.</p>","PeriodicalId":8572,"journal":{"name":"Asthma research and practice","volume":"4 ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40733-017-0037-y","citationCount":"122","resultStr":"{\"title\":\"Microbiome and asthma.\",\"authors\":\"Milena Sokolowska, Remo Frei, Nonhlanhla Lunjani, Cezmi A Akdis, Liam O'Mahony\",\"doi\":\"10.1186/s40733-017-0037-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mucosal immune system is in constant communication with the vast diversity of microbes present on body surfaces. The discovery of novel molecular mechanisms, which mediate host-microbe communication, have highlighted the important roles played by microbes in influencing mucosal immune responses. Dendritic cells, epithelial cells, ILCs, T regulatory cells, effector lymphocytes, NKT cells and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain- or metabolite-specific. Microbial dysbiosis in the gut and the lung is increasingly being associated with the incidence and severity of asthma. More accurate endotyping of patients with asthma may be assisted by further analysis of the composition and metabolic activity of an individual's microbiome. In addition, the efficacy of specific therapeutics may be influenced by the microbiome and novel bacterial-based therapeutics should be considered in future clinical studies.</p>\",\"PeriodicalId\":8572,\"journal\":{\"name\":\"Asthma research and practice\",\"volume\":\"4 \",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40733-017-0037-y\",\"citationCount\":\"122\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asthma research and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40733-017-0037-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asthma research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40733-017-0037-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The mucosal immune system is in constant communication with the vast diversity of microbes present on body surfaces. The discovery of novel molecular mechanisms, which mediate host-microbe communication, have highlighted the important roles played by microbes in influencing mucosal immune responses. Dendritic cells, epithelial cells, ILCs, T regulatory cells, effector lymphocytes, NKT cells and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain- or metabolite-specific. Microbial dysbiosis in the gut and the lung is increasingly being associated with the incidence and severity of asthma. More accurate endotyping of patients with asthma may be assisted by further analysis of the composition and metabolic activity of an individual's microbiome. In addition, the efficacy of specific therapeutics may be influenced by the microbiome and novel bacterial-based therapeutics should be considered in future clinical studies.
期刊介绍:
Asthma Research and Practice is the official publication of Interasma and publishes cutting edge basic, clinical and translational research in addition to hot topic reviews and debate articles relevant to asthma and related disorders (such as rhinitis, COPD overlapping syndrome, sinusitis). The journal has a specialized section which focusses on pediatric asthma research. Asthma Research and Practice aims to serve as an international platform for the dissemination of research of interest to pulmonologists, allergologists, primary care physicians and family doctors, ENTs and other health care providers interested in asthma, its mechanisms and comorbidities.