串联质谱统计置信估计的渐进校准和平均:为什么满足于单一诱饵?

Uri Keich, William Stafford Noble
{"title":"串联质谱统计置信估计的渐进校准和平均:为什么满足于单一诱饵?","authors":"Uri Keich,&nbsp;William Stafford Noble","doi":"10.1007/978-3-319-56970-3_7","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, \"Partial Calibration\" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and \"Averaged TDC\" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with \"Progressive Calibration\" (PC), which attempts to find the \"right\" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the <i>Plasmodium falciparum</i> data it typically yields almost the entire 17% increase in discoveries that \"full calibration\" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"10229 ","pages":"99-116"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_7","citationCount":"12","resultStr":"{\"title\":\"Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?\",\"authors\":\"Uri Keich,&nbsp;William Stafford Noble\",\"doi\":\"10.1007/978-3-319-56970-3_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, \\\"Partial Calibration\\\" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and \\\"Averaged TDC\\\" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with \\\"Progressive Calibration\\\" (PC), which attempts to find the \\\"right\\\" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the <i>Plasmodium falciparum</i> data it typically yields almost the entire 17% increase in discoveries that \\\"full calibration\\\" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"10229 \",\"pages\":\"99-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_7\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-56970-3_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-56970-3_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在一系列串联质谱识别中,估计错误发现率(FDR)主要是通过目标-诱饵竞争(TDC)来实现的。在这里,我们提供了两种新的方法,可以使用任意少量的额外随机抽取的诱饵数据库来提高TDC。具体而言,“部分校准”采用了一种新的元评分方案,使我们能够逐渐受益于鉴定校准产量数量的增加,而“平均TDC”(a-TDC)减少了TDC对小FDR值及其整个变异性的自由偏差。将a-TDC与“渐进校准”(PC)相结合,它试图找到校准所需的“正确”诱饵数量,我们看到了实际数据集的重大影响:在分析恶性疟原虫数据时,它通常会产生几乎17%的发现增长,而“完全校准”的产量(在FDR水平0.05)使用60倍的诱饵。我们的方法通过一种新颖的现实仿真方案得到了进一步验证,重要的是,它们更普遍地适用于在搜索不完整数据库的发现中控制FDR的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?

Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, "Partial Calibration" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and "Averaged TDC" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with "Progressive Calibration" (PC), which attempts to find the "right" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the Plasmodium falciparum data it typically yields almost the entire 17% increase in discoveries that "full calibration" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1