{"title":"极化巨噬细胞亚群差异表达药物外排转运体MRP1和BCRP,导致HIV产生改变。","authors":"Hui He, Merrion Buckley, Bernard Britton, Ying Mu, Kristin Warner, Santosh Kumar, Theodore J Cory","doi":"10.1177/2040206617745168","DOIUrl":null,"url":null,"abstract":"<p><p>Introduction Macrophages play an important role in HIV, where they are a cellular reservoir. Macrophages are polarized into two phenotypes: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which may have altered expression of drug efflux transporters, including BCRP and MRP1. These differences may result in subtherapeutic concentrations of antiretrovirals inside of macrophages and viral replication. Methods U937 and U1 cells were polarized to the M1 or M2 phenotype via IFN-γ and LPS, or IL-4, IL-13, and LPS. Transporter expression was assessed via PCR and Western blotting, and transporter function was assessed via fluorescent dye assays. Transporter function was blocked with the inhibitors MK571 or KO143. Protein expression was confirmed in monocyte-derived macrophages. p24 production was assessed in U1 cells via enzyme-linked immunosorbent assay. Results mRNA and protein analysis demonstrated higher expression of MRP1 in M1 macrophages, while BCRP expression was downregulated in M1 macrophages. Treatment with inhibitors of transporter function decreased the difference in intracellular fluorescence between polarized macrophages. Differences in protein expression, which were observed with U937 cells, were confirmed in monocyte-derived macrophages. M1, but not M2 cells treated with MK571, showed decreased p24 production, consistent with reported MRP1 transporter expression. Conclusions These results support our hypothesis that there is differential expression of MRP1 and BCRP on M1 and M2 polarized macrophages and suggests that these differences may result in altered intracellular concentrations of antiretrovirals in macrophages and alter viral production in these cells. Targeting these differences may be a strategy to decrease viral replication in HIV-infected individuals.</p>","PeriodicalId":7960,"journal":{"name":"Antiviral Chemistry and Chemotherapy","volume":"26 ","pages":"2040206617745168"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2040206617745168","citationCount":"15","resultStr":"{\"title\":\"Polarized macrophage subsets differentially express the drug efflux transporters MRP1 and BCRP, resulting in altered HIV production.\",\"authors\":\"Hui He, Merrion Buckley, Bernard Britton, Ying Mu, Kristin Warner, Santosh Kumar, Theodore J Cory\",\"doi\":\"10.1177/2040206617745168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Introduction Macrophages play an important role in HIV, where they are a cellular reservoir. Macrophages are polarized into two phenotypes: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which may have altered expression of drug efflux transporters, including BCRP and MRP1. These differences may result in subtherapeutic concentrations of antiretrovirals inside of macrophages and viral replication. Methods U937 and U1 cells were polarized to the M1 or M2 phenotype via IFN-γ and LPS, or IL-4, IL-13, and LPS. Transporter expression was assessed via PCR and Western blotting, and transporter function was assessed via fluorescent dye assays. Transporter function was blocked with the inhibitors MK571 or KO143. Protein expression was confirmed in monocyte-derived macrophages. p24 production was assessed in U1 cells via enzyme-linked immunosorbent assay. Results mRNA and protein analysis demonstrated higher expression of MRP1 in M1 macrophages, while BCRP expression was downregulated in M1 macrophages. Treatment with inhibitors of transporter function decreased the difference in intracellular fluorescence between polarized macrophages. Differences in protein expression, which were observed with U937 cells, were confirmed in monocyte-derived macrophages. M1, but not M2 cells treated with MK571, showed decreased p24 production, consistent with reported MRP1 transporter expression. Conclusions These results support our hypothesis that there is differential expression of MRP1 and BCRP on M1 and M2 polarized macrophages and suggests that these differences may result in altered intracellular concentrations of antiretrovirals in macrophages and alter viral production in these cells. Targeting these differences may be a strategy to decrease viral replication in HIV-infected individuals.</p>\",\"PeriodicalId\":7960,\"journal\":{\"name\":\"Antiviral Chemistry and Chemotherapy\",\"volume\":\"26 \",\"pages\":\"2040206617745168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2040206617745168\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral Chemistry and Chemotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2040206617745168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral Chemistry and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2040206617745168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Polarized macrophage subsets differentially express the drug efflux transporters MRP1 and BCRP, resulting in altered HIV production.
Introduction Macrophages play an important role in HIV, where they are a cellular reservoir. Macrophages are polarized into two phenotypes: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which may have altered expression of drug efflux transporters, including BCRP and MRP1. These differences may result in subtherapeutic concentrations of antiretrovirals inside of macrophages and viral replication. Methods U937 and U1 cells were polarized to the M1 or M2 phenotype via IFN-γ and LPS, or IL-4, IL-13, and LPS. Transporter expression was assessed via PCR and Western blotting, and transporter function was assessed via fluorescent dye assays. Transporter function was blocked with the inhibitors MK571 or KO143. Protein expression was confirmed in monocyte-derived macrophages. p24 production was assessed in U1 cells via enzyme-linked immunosorbent assay. Results mRNA and protein analysis demonstrated higher expression of MRP1 in M1 macrophages, while BCRP expression was downregulated in M1 macrophages. Treatment with inhibitors of transporter function decreased the difference in intracellular fluorescence between polarized macrophages. Differences in protein expression, which were observed with U937 cells, were confirmed in monocyte-derived macrophages. M1, but not M2 cells treated with MK571, showed decreased p24 production, consistent with reported MRP1 transporter expression. Conclusions These results support our hypothesis that there is differential expression of MRP1 and BCRP on M1 and M2 polarized macrophages and suggests that these differences may result in altered intracellular concentrations of antiretrovirals in macrophages and alter viral production in these cells. Targeting these differences may be a strategy to decrease viral replication in HIV-infected individuals.
期刊介绍:
Antiviral Chemistry & Chemotherapy publishes the results of original research concerned with the biochemistry, mode of action, chemistry, pharmacology and virology of antiviral compounds. Manuscripts dealing with molecular biology, animal models and vaccines are welcome. The journal also publishes reviews, pointers, short communications and correspondence.