极化巨噬细胞亚群差异表达药物外排转运体MRP1和BCRP,导致HIV产生改变。

Q2 Pharmacology, Toxicology and Pharmaceutics Antiviral Chemistry and Chemotherapy Pub Date : 2018-01-01 DOI:10.1177/2040206617745168
Hui He, Merrion Buckley, Bernard Britton, Ying Mu, Kristin Warner, Santosh Kumar, Theodore J Cory
{"title":"极化巨噬细胞亚群差异表达药物外排转运体MRP1和BCRP,导致HIV产生改变。","authors":"Hui He,&nbsp;Merrion Buckley,&nbsp;Bernard Britton,&nbsp;Ying Mu,&nbsp;Kristin Warner,&nbsp;Santosh Kumar,&nbsp;Theodore J Cory","doi":"10.1177/2040206617745168","DOIUrl":null,"url":null,"abstract":"<p><p>Introduction Macrophages play an important role in HIV, where they are a cellular reservoir. Macrophages are polarized into two phenotypes: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which may have altered expression of drug efflux transporters, including BCRP and MRP1. These differences may result in subtherapeutic concentrations of antiretrovirals inside of macrophages and viral replication. Methods U937 and U1 cells were polarized to the M1 or M2 phenotype via IFN-γ and LPS, or IL-4, IL-13, and LPS. Transporter expression was assessed via PCR and Western blotting, and transporter function was assessed via fluorescent dye assays. Transporter function was blocked with the inhibitors MK571 or KO143. Protein expression was confirmed in monocyte-derived macrophages. p24 production was assessed in U1 cells via enzyme-linked immunosorbent assay. Results mRNA and protein analysis demonstrated higher expression of MRP1 in M1 macrophages, while BCRP expression was downregulated in M1 macrophages. Treatment with inhibitors of transporter function decreased the difference in intracellular fluorescence between polarized macrophages. Differences in protein expression, which were observed with U937 cells, were confirmed in monocyte-derived macrophages. M1, but not M2 cells treated with MK571, showed decreased p24 production, consistent with reported MRP1 transporter expression. Conclusions These results support our hypothesis that there is differential expression of MRP1 and BCRP on M1 and M2 polarized macrophages and suggests that these differences may result in altered intracellular concentrations of antiretrovirals in macrophages and alter viral production in these cells. Targeting these differences may be a strategy to decrease viral replication in HIV-infected individuals.</p>","PeriodicalId":7960,"journal":{"name":"Antiviral Chemistry and Chemotherapy","volume":"26 ","pages":"2040206617745168"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2040206617745168","citationCount":"15","resultStr":"{\"title\":\"Polarized macrophage subsets differentially express the drug efflux transporters MRP1 and BCRP, resulting in altered HIV production.\",\"authors\":\"Hui He,&nbsp;Merrion Buckley,&nbsp;Bernard Britton,&nbsp;Ying Mu,&nbsp;Kristin Warner,&nbsp;Santosh Kumar,&nbsp;Theodore J Cory\",\"doi\":\"10.1177/2040206617745168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Introduction Macrophages play an important role in HIV, where they are a cellular reservoir. Macrophages are polarized into two phenotypes: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which may have altered expression of drug efflux transporters, including BCRP and MRP1. These differences may result in subtherapeutic concentrations of antiretrovirals inside of macrophages and viral replication. Methods U937 and U1 cells were polarized to the M1 or M2 phenotype via IFN-γ and LPS, or IL-4, IL-13, and LPS. Transporter expression was assessed via PCR and Western blotting, and transporter function was assessed via fluorescent dye assays. Transporter function was blocked with the inhibitors MK571 or KO143. Protein expression was confirmed in monocyte-derived macrophages. p24 production was assessed in U1 cells via enzyme-linked immunosorbent assay. Results mRNA and protein analysis demonstrated higher expression of MRP1 in M1 macrophages, while BCRP expression was downregulated in M1 macrophages. Treatment with inhibitors of transporter function decreased the difference in intracellular fluorescence between polarized macrophages. Differences in protein expression, which were observed with U937 cells, were confirmed in monocyte-derived macrophages. M1, but not M2 cells treated with MK571, showed decreased p24 production, consistent with reported MRP1 transporter expression. Conclusions These results support our hypothesis that there is differential expression of MRP1 and BCRP on M1 and M2 polarized macrophages and suggests that these differences may result in altered intracellular concentrations of antiretrovirals in macrophages and alter viral production in these cells. Targeting these differences may be a strategy to decrease viral replication in HIV-infected individuals.</p>\",\"PeriodicalId\":7960,\"journal\":{\"name\":\"Antiviral Chemistry and Chemotherapy\",\"volume\":\"26 \",\"pages\":\"2040206617745168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2040206617745168\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral Chemistry and Chemotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2040206617745168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral Chemistry and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2040206617745168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 15

摘要

巨噬细胞在HIV中扮演着重要的角色,它们是一个细胞储存库。巨噬细胞分化为两种表型:促炎M1巨噬细胞和抗炎M2巨噬细胞,它们可能改变了BCRP和MRP1等药物外排转运蛋白的表达。这些差异可能导致巨噬细胞内抗逆转录病毒药物的亚治疗浓度和病毒复制。方法通过IFN-γ和LPS或IL-4、IL-13和LPS将U937和U1细胞极化为M1或M2表型。通过PCR和Western blotting检测转运蛋白的表达,通过荧光染料检测转运蛋白的功能。MK571或KO143抑制剂阻断了转运蛋白的功能。在单核细胞来源的巨噬细胞中证实了蛋白表达。通过酶联免疫吸附法评估U1细胞中p24的产生。结果mRNA和蛋白分析显示,MRP1在M1巨噬细胞中表达升高,BCRP在M1巨噬细胞中表达下调。用转运蛋白功能抑制剂治疗可降低极化巨噬细胞间细胞内荧光的差异。在U937细胞中观察到的蛋白表达差异在单核细胞来源的巨噬细胞中得到证实。MK571处理的M1细胞,而M2细胞没有,显示p24产生减少,与报道的MRP1转运蛋白表达一致。这些结果支持了我们的假设,即MRP1和BCRP在M1和M2极化巨噬细胞上存在差异表达,并提示这些差异可能导致巨噬细胞内抗逆转录病毒药物浓度的改变,并改变这些细胞中的病毒产生。针对这些差异可能是一种减少hiv感染者体内病毒复制的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polarized macrophage subsets differentially express the drug efflux transporters MRP1 and BCRP, resulting in altered HIV production.

Introduction Macrophages play an important role in HIV, where they are a cellular reservoir. Macrophages are polarized into two phenotypes: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which may have altered expression of drug efflux transporters, including BCRP and MRP1. These differences may result in subtherapeutic concentrations of antiretrovirals inside of macrophages and viral replication. Methods U937 and U1 cells were polarized to the M1 or M2 phenotype via IFN-γ and LPS, or IL-4, IL-13, and LPS. Transporter expression was assessed via PCR and Western blotting, and transporter function was assessed via fluorescent dye assays. Transporter function was blocked with the inhibitors MK571 or KO143. Protein expression was confirmed in monocyte-derived macrophages. p24 production was assessed in U1 cells via enzyme-linked immunosorbent assay. Results mRNA and protein analysis demonstrated higher expression of MRP1 in M1 macrophages, while BCRP expression was downregulated in M1 macrophages. Treatment with inhibitors of transporter function decreased the difference in intracellular fluorescence between polarized macrophages. Differences in protein expression, which were observed with U937 cells, were confirmed in monocyte-derived macrophages. M1, but not M2 cells treated with MK571, showed decreased p24 production, consistent with reported MRP1 transporter expression. Conclusions These results support our hypothesis that there is differential expression of MRP1 and BCRP on M1 and M2 polarized macrophages and suggests that these differences may result in altered intracellular concentrations of antiretrovirals in macrophages and alter viral production in these cells. Targeting these differences may be a strategy to decrease viral replication in HIV-infected individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antiviral Chemistry and Chemotherapy
Antiviral Chemistry and Chemotherapy Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
5.20
自引率
0.00%
发文量
5
审稿时长
15 weeks
期刊介绍: Antiviral Chemistry & Chemotherapy publishes the results of original research concerned with the biochemistry, mode of action, chemistry, pharmacology and virology of antiviral compounds. Manuscripts dealing with molecular biology, animal models and vaccines are welcome. The journal also publishes reviews, pointers, short communications and correspondence.
期刊最新文献
The continuing need for therapeutic agents for respiratory syncytial virus infection. The development of BVDU: An odyssey. Meeting report: 34th international conference on antiviral research. Active site polymerase inhibitor nucleotides (ASPINs): Potential agents for chronic HBV cure regimens. Reflections on the Rega Institute for Medical Research, at the fiftieth anniversary of the Rega Stichting vzw (Rega Instituut vzw, Rega Foundation).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1