{"title":"吲哚胺2,3-双加氧酶活性增加干扰素γ刺激的人原代单核细胞NAD+的产生。","authors":"Ross S Grant","doi":"10.1177/1178646917751636","DOIUrl":null,"url":null,"abstract":"<p><p>IFN-γ activation of mononuclear phagocytes significantly increases indoleamine 2,3-dioxygenase (IDO) and flux through the kynurenine pathway (KP). However, the effect of IDO on NAD+ synthesis, the end product of KP metabolism, is unknown. To investigate this, primary human peripheral blood mononuclear cells were cultured up to 10 days and activated with IFN-γ in the presence or absence of a poly(ADP-ribose) polymerase (PARP) inhibitor. Day 10 macrophages had significantly higher NAD+ levels compared with monocytes. IFN-γ activation of macrophages resulted in the highest induction of IDO but decreased intracellular NAD+ concentrations at both 24 and 48 hours. However, IFN-γ activation of both day 6 and day 10 macrophages in the presence of a PARP inhibitor resulted in significantly higher intracellular NAD+ levels at 24 hours. This study provides evidence for the first time that an immune-mediated increase in IDO activity increases NAD+ biosynthesis concomitantly with an increase in NAD+ catabolism in primary human macrophages.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"11 ","pages":"1178646917751636"},"PeriodicalIF":2.7000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178646917751636","citationCount":"17","resultStr":"{\"title\":\"Indoleamine 2,3-Dioxygenase Activity Increases NAD+ Production in IFN-γ-Stimulated Human Primary Mononuclear Cells.\",\"authors\":\"Ross S Grant\",\"doi\":\"10.1177/1178646917751636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IFN-γ activation of mononuclear phagocytes significantly increases indoleamine 2,3-dioxygenase (IDO) and flux through the kynurenine pathway (KP). However, the effect of IDO on NAD+ synthesis, the end product of KP metabolism, is unknown. To investigate this, primary human peripheral blood mononuclear cells were cultured up to 10 days and activated with IFN-γ in the presence or absence of a poly(ADP-ribose) polymerase (PARP) inhibitor. Day 10 macrophages had significantly higher NAD+ levels compared with monocytes. IFN-γ activation of macrophages resulted in the highest induction of IDO but decreased intracellular NAD+ concentrations at both 24 and 48 hours. However, IFN-γ activation of both day 6 and day 10 macrophages in the presence of a PARP inhibitor resulted in significantly higher intracellular NAD+ levels at 24 hours. This study provides evidence for the first time that an immune-mediated increase in IDO activity increases NAD+ biosynthesis concomitantly with an increase in NAD+ catabolism in primary human macrophages.</p>\",\"PeriodicalId\":46603,\"journal\":{\"name\":\"International Journal of Tryptophan Research\",\"volume\":\"11 \",\"pages\":\"1178646917751636\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1178646917751636\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Tryptophan Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1178646917751636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Tryptophan Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1178646917751636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Indoleamine 2,3-Dioxygenase Activity Increases NAD+ Production in IFN-γ-Stimulated Human Primary Mononuclear Cells.
IFN-γ activation of mononuclear phagocytes significantly increases indoleamine 2,3-dioxygenase (IDO) and flux through the kynurenine pathway (KP). However, the effect of IDO on NAD+ synthesis, the end product of KP metabolism, is unknown. To investigate this, primary human peripheral blood mononuclear cells were cultured up to 10 days and activated with IFN-γ in the presence or absence of a poly(ADP-ribose) polymerase (PARP) inhibitor. Day 10 macrophages had significantly higher NAD+ levels compared with monocytes. IFN-γ activation of macrophages resulted in the highest induction of IDO but decreased intracellular NAD+ concentrations at both 24 and 48 hours. However, IFN-γ activation of both day 6 and day 10 macrophages in the presence of a PARP inhibitor resulted in significantly higher intracellular NAD+ levels at 24 hours. This study provides evidence for the first time that an immune-mediated increase in IDO activity increases NAD+ biosynthesis concomitantly with an increase in NAD+ catabolism in primary human macrophages.