ShapeShop:通过互动实验来理解深度学习表征。

Fred Hohman, Nathan Hodas, Duen Horng Chau
{"title":"ShapeShop:通过互动实验来理解深度学习表征。","authors":"Fred Hohman,&nbsp;Nathan Hodas,&nbsp;Duen Horng Chau","doi":"10.1145/3027063.3053103","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as \"black-boxes\" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.</p>","PeriodicalId":73006,"journal":{"name":"Extended abstracts on Human factors in computing systems. CHI Conference","volume":"2017 ","pages":"1694-1699"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3027063.3053103","citationCount":"23","resultStr":"{\"title\":\"ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.\",\"authors\":\"Fred Hohman,&nbsp;Nathan Hodas,&nbsp;Duen Horng Chau\",\"doi\":\"10.1145/3027063.3053103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as \\\"black-boxes\\\" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.</p>\",\"PeriodicalId\":73006,\"journal\":{\"name\":\"Extended abstracts on Human factors in computing systems. CHI Conference\",\"volume\":\"2017 \",\"pages\":\"1694-1699\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3027063.3053103\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extended abstracts on Human factors in computing systems. CHI Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027063.3053103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended abstracts on Human factors in computing systems. CHI Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027063.3053103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

深度学习是许多新技术背后的驱动力;然而,由于其内部复杂性难以理解,深度神经网络通常被视为“黑盒子”。很少有研究专注于帮助人们探索和理解用户数据与深度学习模型中学习表征之间的关系。我们介绍了我们正在进行的工作,ShapeShop,一个用于可视化和理解神经网络模型所学语义的交互式系统。ShapeShop使用标准的web技术构建,允许用户试验和比较深度学习模型,以帮助探索图像分类器的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contextual AI Journaling: Integrating LLM and Time Series Behavioral Sensing Technology to Promote Self-Reflection and Well-being using the MindScape App. Will AI allow us to dispense with all or most accessibility regulations? Battling Bias in Primary Care Encounters: Informatics Designs to Support Clinicians. Emerging Telepresence Technologies in Hybrid Learning Environments. Investigating the Potential of Artificial Intelligence Powered Interfaces to Support Different Types of Memory for People with Dementia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1