免疫基因组学:与TcR-γ/δ重组相关的前列腺癌阴性预后。

Q2 Medicine Cancer Microenvironment Pub Date : 2018-06-01 Epub Date: 2018-01-22 DOI:10.1007/s12307-018-0204-6
Yaping N Tu, Wei Lue Tong, John M Yavorski, George Blanck
{"title":"免疫基因组学:与TcR-γ/δ重组相关的前列腺癌阴性预后。","authors":"Yaping N Tu,&nbsp;Wei Lue Tong,&nbsp;John M Yavorski,&nbsp;George Blanck","doi":"10.1007/s12307-018-0204-6","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a scripted algorithm, based on previous, earlier editions of the algorithm, to mine prostate cancer exome files for T-cell receptor (TcR) recombination reads: Reads representing TcR gene recombinations were identified in 497 prostate cancer exome files from the cancer genome atlas (TCGA). As has been reported for melanoma, co-detection of productive TcR-α and TcR-β recombination reads correlated with an RNA expression signature representing T-cell exhaustion, particularly with high RNA levels for PD-1 and PD-L1, in comparison to several different control sets of samples. Co-detection of TcR-α and TcR-β recombination reads also correlated with high level expression of genes representing antigen presenting functions, further supporting the conclusion that co-detection of TcR-α and TcR-β recombination reads represents an immunologically relevant microenvironment. Finally, detection of unproductive TcR-δ recombinations, and unproductive and productive TcR-γ recombinations, strongly correlated with, and may represent a convenient biomarker for a poor clinical outcome. These results underscore the value of the genomics-based assessment of unproductive TcR recombinations and raise questions about the impact of tumor microenvironment lymphocytes in the absence of antigenicity.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"41-49"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0204-6","citationCount":"18","resultStr":"{\"title\":\"Immunogenomics: A Negative Prostate Cancer Outcome Associated with TcR-γ/δ Recombinations.\",\"authors\":\"Yaping N Tu,&nbsp;Wei Lue Tong,&nbsp;John M Yavorski,&nbsp;George Blanck\",\"doi\":\"10.1007/s12307-018-0204-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed a scripted algorithm, based on previous, earlier editions of the algorithm, to mine prostate cancer exome files for T-cell receptor (TcR) recombination reads: Reads representing TcR gene recombinations were identified in 497 prostate cancer exome files from the cancer genome atlas (TCGA). As has been reported for melanoma, co-detection of productive TcR-α and TcR-β recombination reads correlated with an RNA expression signature representing T-cell exhaustion, particularly with high RNA levels for PD-1 and PD-L1, in comparison to several different control sets of samples. Co-detection of TcR-α and TcR-β recombination reads also correlated with high level expression of genes representing antigen presenting functions, further supporting the conclusion that co-detection of TcR-α and TcR-β recombination reads represents an immunologically relevant microenvironment. Finally, detection of unproductive TcR-δ recombinations, and unproductive and productive TcR-γ recombinations, strongly correlated with, and may represent a convenient biomarker for a poor clinical outcome. These results underscore the value of the genomics-based assessment of unproductive TcR recombinations and raise questions about the impact of tumor microenvironment lymphocytes in the absence of antigenicity.</p>\",\"PeriodicalId\":9425,\"journal\":{\"name\":\"Cancer Microenvironment\",\"volume\":\"11 1\",\"pages\":\"41-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12307-018-0204-6\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Microenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12307-018-0204-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12307-018-0204-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 18

摘要

我们开发了一种脚本算法,基于先前的早期版本的算法,以挖掘前列腺癌外显子组文件中的t细胞受体(TcR)重组reads:代表TcR基因重组的reads在癌症基因组图谱(TCGA)的497个前列腺癌外显子组文件中被鉴定出来。正如已经报道的黑色素瘤一样,与几个不同的对照样本相比,共同检测TcR-α和TcR-β重组reads与代表t细胞衰竭的RNA表达特征相关,特别是PD-1和PD-L1的高RNA水平。同时检测TcR-α和TcR-β重组reads也与抗原呈递功能基因的高水平表达相关,进一步支持了TcR-α和TcR-β重组reads同时检测代表免疫相关微环境的结论。最后,检测非生产性TcR-δ重组,以及非生产性和生产性TcR-γ重组,与不良临床结果密切相关,并可能代表一种方便的生物标志物。这些结果强调了基于基因组学评估非生产性TcR重组的价值,并提出了关于肿瘤微环境淋巴细胞在缺乏抗原性时的影响的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immunogenomics: A Negative Prostate Cancer Outcome Associated with TcR-γ/δ Recombinations.

We developed a scripted algorithm, based on previous, earlier editions of the algorithm, to mine prostate cancer exome files for T-cell receptor (TcR) recombination reads: Reads representing TcR gene recombinations were identified in 497 prostate cancer exome files from the cancer genome atlas (TCGA). As has been reported for melanoma, co-detection of productive TcR-α and TcR-β recombination reads correlated with an RNA expression signature representing T-cell exhaustion, particularly with high RNA levels for PD-1 and PD-L1, in comparison to several different control sets of samples. Co-detection of TcR-α and TcR-β recombination reads also correlated with high level expression of genes representing antigen presenting functions, further supporting the conclusion that co-detection of TcR-α and TcR-β recombination reads represents an immunologically relevant microenvironment. Finally, detection of unproductive TcR-δ recombinations, and unproductive and productive TcR-γ recombinations, strongly correlated with, and may represent a convenient biomarker for a poor clinical outcome. These results underscore the value of the genomics-based assessment of unproductive TcR recombinations and raise questions about the impact of tumor microenvironment lymphocytes in the absence of antigenicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Microenvironment
Cancer Microenvironment Medicine-Oncology
CiteScore
4.90
自引率
0.00%
发文量
0
期刊介绍: Cancer Microenvironment is the official journal of the International Cancer Microenvironment Society (ICMS). It publishes original studies in all aspects of basic, clinical and translational research devoted to the study of cancer microenvironment. It also features reports on clinical trials. Coverage in Cancer Microenvironment includes: regulation of gene expression in the cancer microenvironment; innate and adaptive immunity in the cancer microenvironment, inflammation and cancer; tumor-associated stroma and extracellular matrix, tumor-endothelium interactions (angiogenesis, extravasation), cancer stem cells, the metastatic niche, targeting the tumor microenvironment: preclinical and clinical trials.
期刊最新文献
Immunosuppressive Tumor Microenvironment Status and Histological Grading of Endometrial Carcinoma. Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment. Ascites from Ovarian Cancer Induces Novel Fucosylated Proteins. Pleiotropic Effects of Epithelial Mesenchymal Crosstalk on Head and Neck Cancer: EMT and beyond. The Cross Talk between Cancer Stem Cells/Cancer Initiating Cells and Tumor Microenvironment: The Missing Piece of the Puzzle for the Efficient Targeting of these Cells with Immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1