Wolfgang Hg Laux, Stéphane Priet, Karine Alvarez, Suzanne Peyrottes, Christian Périgaud
{"title":"新的9-[(2-磷酸甲氧基)乙基]腺嘌呤二磷酸类似物的合成及其对HIV-1逆转录酶的底物性质。","authors":"Wolfgang Hg Laux, Stéphane Priet, Karine Alvarez, Suzanne Peyrottes, Christian Périgaud","doi":"10.1177/2040206618757636","DOIUrl":null,"url":null,"abstract":"<p><p>Background The replacement of β,γ-pyrophosphate by β,γ-phosphonate moieties within the triphosphate chain of 5'-triphosphate nucleoside analogues was previously studied for various antiviral nucleoside analogues such as AZT and 2',3'-dideoxynucleosides. Thus, it has been shown that these chemical modifications could preserve, in some cases, the terminating substrate properties of the triphosphate analogue for HIV-RT. Herein, we aimed to study such 5'-triphosphate mimics based on the scaffold of the well-known antiviral agent 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA, Adefovir). Methods Synthesis involved coupling of a morpholidate derivative of PMEA with appropriate pyrophosphoryl analogues. The relative efficiencies of incorporation of the studied diphosphate phosphonates were measured using subtype B WT HIV-1 RT in an in vitro susceptibility assay, in comparison to the parent nucleotide analogue (PMEApp). Results Searching for nucleoside 5'-triphosphate mimics, we have synthesized and studied a series of diphosphate analogues of PMEA bearing non hydrolysable bonds between the and phosphorus atoms. We also examined their relative inhibitory capacity towards HIV-1 reverse transcriptase in comparison to the parent nucleotide analogue (PMEApp). Only one of them appeared as a weak inhibitor (IC<sub>50</sub> = 403.0 ± 75.5 µM) and proved to be less effective than PMEApp (IC<sub>50</sub> = 6.4 ± 0.8 µM). Conclusion PMEA diphosphoryl derivatives were designed as potential substrates and/or inhibitors of various viral polymerases. These modifications dramatically affect their ability to inhibit HIV-RT.</p>","PeriodicalId":7960,"journal":{"name":"Antiviral Chemistry and Chemotherapy","volume":"26 ","pages":"2040206618757636"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2040206618757636","citationCount":"1","resultStr":"{\"title\":\"Synthesis and substrate properties towards HIV-1 reverse transcriptase of new diphosphate analogues of 9-[(2-phosphonomethoxy)ethyl]adenine.\",\"authors\":\"Wolfgang Hg Laux, Stéphane Priet, Karine Alvarez, Suzanne Peyrottes, Christian Périgaud\",\"doi\":\"10.1177/2040206618757636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Background The replacement of β,γ-pyrophosphate by β,γ-phosphonate moieties within the triphosphate chain of 5'-triphosphate nucleoside analogues was previously studied for various antiviral nucleoside analogues such as AZT and 2',3'-dideoxynucleosides. Thus, it has been shown that these chemical modifications could preserve, in some cases, the terminating substrate properties of the triphosphate analogue for HIV-RT. Herein, we aimed to study such 5'-triphosphate mimics based on the scaffold of the well-known antiviral agent 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA, Adefovir). Methods Synthesis involved coupling of a morpholidate derivative of PMEA with appropriate pyrophosphoryl analogues. The relative efficiencies of incorporation of the studied diphosphate phosphonates were measured using subtype B WT HIV-1 RT in an in vitro susceptibility assay, in comparison to the parent nucleotide analogue (PMEApp). Results Searching for nucleoside 5'-triphosphate mimics, we have synthesized and studied a series of diphosphate analogues of PMEA bearing non hydrolysable bonds between the and phosphorus atoms. We also examined their relative inhibitory capacity towards HIV-1 reverse transcriptase in comparison to the parent nucleotide analogue (PMEApp). Only one of them appeared as a weak inhibitor (IC<sub>50</sub> = 403.0 ± 75.5 µM) and proved to be less effective than PMEApp (IC<sub>50</sub> = 6.4 ± 0.8 µM). Conclusion PMEA diphosphoryl derivatives were designed as potential substrates and/or inhibitors of various viral polymerases. These modifications dramatically affect their ability to inhibit HIV-RT.</p>\",\"PeriodicalId\":7960,\"journal\":{\"name\":\"Antiviral Chemistry and Chemotherapy\",\"volume\":\"26 \",\"pages\":\"2040206618757636\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2040206618757636\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral Chemistry and Chemotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2040206618757636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral Chemistry and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2040206618757636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Synthesis and substrate properties towards HIV-1 reverse transcriptase of new diphosphate analogues of 9-[(2-phosphonomethoxy)ethyl]adenine.
Background The replacement of β,γ-pyrophosphate by β,γ-phosphonate moieties within the triphosphate chain of 5'-triphosphate nucleoside analogues was previously studied for various antiviral nucleoside analogues such as AZT and 2',3'-dideoxynucleosides. Thus, it has been shown that these chemical modifications could preserve, in some cases, the terminating substrate properties of the triphosphate analogue for HIV-RT. Herein, we aimed to study such 5'-triphosphate mimics based on the scaffold of the well-known antiviral agent 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA, Adefovir). Methods Synthesis involved coupling of a morpholidate derivative of PMEA with appropriate pyrophosphoryl analogues. The relative efficiencies of incorporation of the studied diphosphate phosphonates were measured using subtype B WT HIV-1 RT in an in vitro susceptibility assay, in comparison to the parent nucleotide analogue (PMEApp). Results Searching for nucleoside 5'-triphosphate mimics, we have synthesized and studied a series of diphosphate analogues of PMEA bearing non hydrolysable bonds between the and phosphorus atoms. We also examined their relative inhibitory capacity towards HIV-1 reverse transcriptase in comparison to the parent nucleotide analogue (PMEApp). Only one of them appeared as a weak inhibitor (IC50 = 403.0 ± 75.5 µM) and proved to be less effective than PMEApp (IC50 = 6.4 ± 0.8 µM). Conclusion PMEA diphosphoryl derivatives were designed as potential substrates and/or inhibitors of various viral polymerases. These modifications dramatically affect their ability to inhibit HIV-RT.
期刊介绍:
Antiviral Chemistry & Chemotherapy publishes the results of original research concerned with the biochemistry, mode of action, chemistry, pharmacology and virology of antiviral compounds. Manuscripts dealing with molecular biology, animal models and vaccines are welcome. The journal also publishes reviews, pointers, short communications and correspondence.