离散分布间 KL Divergence 的最小率最优估计。

Yanjun Han, Jiantao Jiao, Tsachy Weissman
{"title":"离散分布间 KL Divergence 的最小率最优估计。","authors":"Yanjun Han, Jiantao Jiao, Tsachy Weissman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We refine the general methodology in [1] for the construction and analysis of essentially minimax estimators for a wide class of functionals of finite dimensional parameters, and elaborate on the case of discrete distributions with support size <i>S</i> comparable with the number of observations <i>n</i>. Specifically, we determine the \"smooth\" and \"non-smooth\" regimes based on the confidence set and the smoothness of the functional. In the \"non-smooth\" regime, we apply an unbiased estimator for a \"suitable\" polynomial approximation of the functional. In the \"smooth\" regime, we construct a bias corrected version of the Maximum Likelihood Estimator (MLE) based on Taylor expansion. We apply the general methodology to the problem of estimating the KL divergence between two discrete distributions from empirical data. We construct a minimax rate-optimal estimator which is adaptive in the sense that it does not require the knowledge of the support size nor the upper bound on the likelihood ratio. Moreover, the performance of the optimal estimator with <i>n</i> samples is essentially that of the MLE with <i>n</i> ln <i>n</i> samples, i.e., the <i>effective sample size enlargement</i> phenomenon holds.</p>","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812299/pdf/nihms910323.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimax Rate-optimal Estimation of KL Divergence between Discrete Distributions.\",\"authors\":\"Yanjun Han, Jiantao Jiao, Tsachy Weissman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We refine the general methodology in [1] for the construction and analysis of essentially minimax estimators for a wide class of functionals of finite dimensional parameters, and elaborate on the case of discrete distributions with support size <i>S</i> comparable with the number of observations <i>n</i>. Specifically, we determine the \\\"smooth\\\" and \\\"non-smooth\\\" regimes based on the confidence set and the smoothness of the functional. In the \\\"non-smooth\\\" regime, we apply an unbiased estimator for a \\\"suitable\\\" polynomial approximation of the functional. In the \\\"smooth\\\" regime, we construct a bias corrected version of the Maximum Likelihood Estimator (MLE) based on Taylor expansion. We apply the general methodology to the problem of estimating the KL divergence between two discrete distributions from empirical data. We construct a minimax rate-optimal estimator which is adaptive in the sense that it does not require the knowledge of the support size nor the upper bound on the likelihood ratio. Moreover, the performance of the optimal estimator with <i>n</i> samples is essentially that of the MLE with <i>n</i> ln <i>n</i> samples, i.e., the <i>effective sample size enlargement</i> phenomenon holds.</p>\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812299/pdf/nihms910323.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们完善了 [1] 中的一般方法,即构建和分析各类有限维度参数函数的本质最小估计器,并详细阐述了支持大小 S 与观察数 n 相当的离散分布的情况。具体而言,我们根据置信集和函数的平滑度确定了 "平滑 "和 "非平滑 "机制。在 "非平稳 "状态下,我们对函数的 "合适 "多项式近似采用无偏估计法。在 "平滑 "机制中,我们根据泰勒展开构建了最大似然估计器(MLE)的偏差修正版本。我们将一般方法应用于从经验数据中估计两个离散分布之间的 KL 分歧问题。我们构建了一个最小率最优估计器,它是自适应的,因为它不需要知道支持大小或似然比上界。此外,具有 n 个样本的最优估计器的性能基本上与具有 n ln n 个样本的 MLE 相同,即有效样本量扩大现象成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimax Rate-optimal Estimation of KL Divergence between Discrete Distributions.

We refine the general methodology in [1] for the construction and analysis of essentially minimax estimators for a wide class of functionals of finite dimensional parameters, and elaborate on the case of discrete distributions with support size S comparable with the number of observations n. Specifically, we determine the "smooth" and "non-smooth" regimes based on the confidence set and the smoothness of the functional. In the "non-smooth" regime, we apply an unbiased estimator for a "suitable" polynomial approximation of the functional. In the "smooth" regime, we construct a bias corrected version of the Maximum Likelihood Estimator (MLE) based on Taylor expansion. We apply the general methodology to the problem of estimating the KL divergence between two discrete distributions from empirical data. We construct a minimax rate-optimal estimator which is adaptive in the sense that it does not require the knowledge of the support size nor the upper bound on the likelihood ratio. Moreover, the performance of the optimal estimator with n samples is essentially that of the MLE with n ln n samples, i.e., the effective sample size enlargement phenomenon holds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rank Preserving Code-based Signature Buddhism and the Religious Other Statistical Inference and Exact Saddle Point Approximations Topological structures on DMC spaces A computer-aided investigation on the fundamental limits of caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1