不连续Percoll密度梯度离心分离法分离猪幼肌功能分化肌前体细胞群。

Q1 Biochemistry, Genetics and Molecular Biology BMC Cell Biology Pub Date : 2018-03-09 DOI:10.1186/s12860-018-0156-1
Claudia Miersch, Katja Stange, Monika Röntgen
{"title":"不连续Percoll密度梯度离心分离法分离猪幼肌功能分化肌前体细胞群。","authors":"Claudia Miersch,&nbsp;Katja Stange,&nbsp;Monika Röntgen","doi":"10.1186/s12860-018-0156-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Satellite cells (SC) and their descendants, muscle precursor cells (MPC), play a key role in postnatal muscle development, regeneration, and plasticity. Several studies have provided evidence that SC and MPC represent a heterogeneous population differing in their biochemical and functional properties. The identification and characterization of functionally divergent SC subpopulations should help to reveal the precise involvement of SC/MPC in these myogenic processes. The aim of the present work was therefore to separate SC subpopulations by using Percoll gradients and to characterize their myogenic marker profiles and their functional properties (adhesion, proliferation, and differentiation).</p><p><strong>Results: </strong>SC/MPC from muscles of 4-day-old piglets were isolated by trypsin digestion and enriched by Percoll density gradient centrifugation. A mixed myogenic cell population was obtained from the 40/70% interface (termed: mixed P40/70) of a 25/40/70% Percoll gradient. Thereafter, by using a more stepped 25/40/50/70% Percoll gradient, mixed P40/70 was divided into subpopulation 40/50 (SP40/50) collected from the 40/50% interface and subpopulation 50/70 (SP50/70) collected from the 50/70% interface. All three isolated populations proliferated and showed a myogenic phenotype characterized by the ability to express myogenic markers (Pax7, MyoD1, Desmin, and MyoG) and to differentiate into myotubes. However, compared with mixed P40/70, SP40/50 and SP50/70 exhibited distinct functional behavior. Growth kinetic curves over 90 h obtained by the xCELLigence system and proliferation assays revealed that SP40/50 and mixed P40/70 constituted a fast adhering and fast proliferating phenotype. In contrast, SP50/70 showed considerably slower adhesion and proliferation. The fast-proliferating SP40/50 showed the highest myogenic differentiation potential with higher fusion rates and the formation of more middle-sized and large myotubes.</p><p><strong>Conclusions: </strong>The described Percoll density gradient centrifugation represents a useful tool for subdividing pig SC/MPC populations with divergent myogenic functions. The physiological role of SC subpopulations during myogenesis and the interaction of these populations can now be analyzed to a greater extent, shedding light on postnatal growth variations in pigs and probably in other animals.</p>","PeriodicalId":9051,"journal":{"name":"BMC Cell Biology","volume":" ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12860-018-0156-1","citationCount":"12","resultStr":"{\"title\":\"Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous Percoll density gradient centrifugation.\",\"authors\":\"Claudia Miersch,&nbsp;Katja Stange,&nbsp;Monika Röntgen\",\"doi\":\"10.1186/s12860-018-0156-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Satellite cells (SC) and their descendants, muscle precursor cells (MPC), play a key role in postnatal muscle development, regeneration, and plasticity. Several studies have provided evidence that SC and MPC represent a heterogeneous population differing in their biochemical and functional properties. The identification and characterization of functionally divergent SC subpopulations should help to reveal the precise involvement of SC/MPC in these myogenic processes. The aim of the present work was therefore to separate SC subpopulations by using Percoll gradients and to characterize their myogenic marker profiles and their functional properties (adhesion, proliferation, and differentiation).</p><p><strong>Results: </strong>SC/MPC from muscles of 4-day-old piglets were isolated by trypsin digestion and enriched by Percoll density gradient centrifugation. A mixed myogenic cell population was obtained from the 40/70% interface (termed: mixed P40/70) of a 25/40/70% Percoll gradient. Thereafter, by using a more stepped 25/40/50/70% Percoll gradient, mixed P40/70 was divided into subpopulation 40/50 (SP40/50) collected from the 40/50% interface and subpopulation 50/70 (SP50/70) collected from the 50/70% interface. All three isolated populations proliferated and showed a myogenic phenotype characterized by the ability to express myogenic markers (Pax7, MyoD1, Desmin, and MyoG) and to differentiate into myotubes. However, compared with mixed P40/70, SP40/50 and SP50/70 exhibited distinct functional behavior. Growth kinetic curves over 90 h obtained by the xCELLigence system and proliferation assays revealed that SP40/50 and mixed P40/70 constituted a fast adhering and fast proliferating phenotype. In contrast, SP50/70 showed considerably slower adhesion and proliferation. The fast-proliferating SP40/50 showed the highest myogenic differentiation potential with higher fusion rates and the formation of more middle-sized and large myotubes.</p><p><strong>Conclusions: </strong>The described Percoll density gradient centrifugation represents a useful tool for subdividing pig SC/MPC populations with divergent myogenic functions. The physiological role of SC subpopulations during myogenesis and the interaction of these populations can now be analyzed to a greater extent, shedding light on postnatal growth variations in pigs and probably in other animals.</p>\",\"PeriodicalId\":9051,\"journal\":{\"name\":\"BMC Cell Biology\",\"volume\":\" \",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12860-018-0156-1\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12860-018-0156-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12860-018-0156-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12

摘要

背景:卫星细胞(SC)及其后代肌肉前体细胞(MPC)在出生后肌肉发育、再生和可塑性中起着关键作用。一些研究提供的证据表明,SC和MPC代表了一个异质群体,其生化和功能特性不同。功能分化的SC亚群的鉴定和特征应该有助于揭示SC/MPC在这些肌生成过程中的确切参与。因此,本研究的目的是通过使用Percoll梯度来分离SC亚群,并表征它们的肌源性标记谱及其功能特性(粘附、增殖和分化)。结果:4日龄仔猪肌肉SC/MPC经胰蛋白酶消化分离得到,经Percoll密度梯度离心富集。从25/40/70% Percoll梯度的40/70%界面(称为混合P40/70)获得混合肌源性细胞群。然后,采用25/40/50/70% Percoll梯度,将混合P40/70分为40/50%界面采集的40/50亚种群(SP40/50)和50/70%界面采集的50/70亚种群(SP50/70)。所有三个分离的群体都增殖并表现出肌源性表型,其特征是能够表达肌源性标记(Pax7, MyoD1, Desmin和MyoG)并分化为肌管。但与混合的P40/70相比,SP40/50和SP50/70表现出明显的功能行为。通过xCELLigence系统和增殖实验获得的90 h生长动力学曲线显示,SP40/50和混合P40/70构成快速粘附和快速增殖表型。相比之下,SP50/70的粘附和增殖速度明显减慢。快速增殖的SP40/50表现出最高的成肌分化潜能,融合率较高,形成更多的大中型肌管。结论:所描述的Percoll密度梯度离心是细分具有不同肌生成功能的猪SC/MPC群体的有用工具。SC亚群在肌肉发生过程中的生理作用以及这些群体之间的相互作用现在可以在更大程度上进行分析,从而揭示猪和其他动物的出生后生长变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous Percoll density gradient centrifugation.

Background: Satellite cells (SC) and their descendants, muscle precursor cells (MPC), play a key role in postnatal muscle development, regeneration, and plasticity. Several studies have provided evidence that SC and MPC represent a heterogeneous population differing in their biochemical and functional properties. The identification and characterization of functionally divergent SC subpopulations should help to reveal the precise involvement of SC/MPC in these myogenic processes. The aim of the present work was therefore to separate SC subpopulations by using Percoll gradients and to characterize their myogenic marker profiles and their functional properties (adhesion, proliferation, and differentiation).

Results: SC/MPC from muscles of 4-day-old piglets were isolated by trypsin digestion and enriched by Percoll density gradient centrifugation. A mixed myogenic cell population was obtained from the 40/70% interface (termed: mixed P40/70) of a 25/40/70% Percoll gradient. Thereafter, by using a more stepped 25/40/50/70% Percoll gradient, mixed P40/70 was divided into subpopulation 40/50 (SP40/50) collected from the 40/50% interface and subpopulation 50/70 (SP50/70) collected from the 50/70% interface. All three isolated populations proliferated and showed a myogenic phenotype characterized by the ability to express myogenic markers (Pax7, MyoD1, Desmin, and MyoG) and to differentiate into myotubes. However, compared with mixed P40/70, SP40/50 and SP50/70 exhibited distinct functional behavior. Growth kinetic curves over 90 h obtained by the xCELLigence system and proliferation assays revealed that SP40/50 and mixed P40/70 constituted a fast adhering and fast proliferating phenotype. In contrast, SP50/70 showed considerably slower adhesion and proliferation. The fast-proliferating SP40/50 showed the highest myogenic differentiation potential with higher fusion rates and the formation of more middle-sized and large myotubes.

Conclusions: The described Percoll density gradient centrifugation represents a useful tool for subdividing pig SC/MPC populations with divergent myogenic functions. The physiological role of SC subpopulations during myogenesis and the interaction of these populations can now be analyzed to a greater extent, shedding light on postnatal growth variations in pigs and probably in other animals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Cell Biology
BMC Cell Biology 生物-细胞生物学
CiteScore
7.30
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: BMC Molecular and Cell Biology, formerly known as BMC Cell Biology, is an open access journal that considers articles on all aspects of both eukaryotic and prokaryotic cell and molecular biology, including structural and functional cell biology, DNA and RNA in a cellular context and biochemistry, as well as research using both the experimental and theoretical aspects of physics to study biological processes and investigations into the structure of biological macromolecules.
期刊最新文献
Mitotic activity patterns and cytoskeletal changes throughout the progression of diapause developmental program in Daphnia. Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. Post-treatment de-phosphorylation of p53 correlates with dasatinib responsiveness in malignant melanoma. Comparative evaluation of mesenchymal stromal cells from umbilical cord and amniotic membrane in xeno-free conditions. The STRIPAK complex components FAM40A and FAM40B regulate endothelial cell contractility via ROCKs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1