重组腺相关病毒缓慢注入小鼠脑脊液间隙。

Q1 Immunology and Microbiology Human Gene Therapy Methods Pub Date : 2018-04-01 Epub Date: 2018-03-29 DOI:10.1089/hgtb.2017.250
Dan Wang, Jia Li, Karen Tran, Daniel R Burt, Li Zhong, Guangping Gao
{"title":"重组腺相关病毒缓慢注入小鼠脑脊液间隙。","authors":"Dan Wang,&nbsp;Jia Li,&nbsp;Karen Tran,&nbsp;Daniel R Burt,&nbsp;Li Zhong,&nbsp;Guangping Gao","doi":"10.1089/hgtb.2017.250","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated viruses (rAAVs) are the leading in vivo gene delivery platform, and have been extensively studied in gene therapy targeting various tissues, including the central nervous system (CNS). A single-bolus rAAV injection to the cerebrospinal fluid (CSF) space has been widely used to target the CNS, but it suffers from several drawbacks, such as leakage to peripheral tissues. Here, a protocol is described using an osmotic pump to infuse rAAV slowly into the mouse CSF space. Compared to the single-bolus injection technique, pump infusion can lead to higher CNS transduction and lower transduction in the peripheral tissues.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"29 2","pages":"75-85"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2017.250","citationCount":"7","resultStr":"{\"title\":\"Slow Infusion of Recombinant Adeno-Associated Viruses into the Mouse Cerebrospinal Fluid Space.\",\"authors\":\"Dan Wang,&nbsp;Jia Li,&nbsp;Karen Tran,&nbsp;Daniel R Burt,&nbsp;Li Zhong,&nbsp;Guangping Gao\",\"doi\":\"10.1089/hgtb.2017.250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant adeno-associated viruses (rAAVs) are the leading in vivo gene delivery platform, and have been extensively studied in gene therapy targeting various tissues, including the central nervous system (CNS). A single-bolus rAAV injection to the cerebrospinal fluid (CSF) space has been widely used to target the CNS, but it suffers from several drawbacks, such as leakage to peripheral tissues. Here, a protocol is described using an osmotic pump to infuse rAAV slowly into the mouse CSF space. Compared to the single-bolus injection technique, pump infusion can lead to higher CNS transduction and lower transduction in the peripheral tissues.</p>\",\"PeriodicalId\":13126,\"journal\":{\"name\":\"Human Gene Therapy Methods\",\"volume\":\"29 2\",\"pages\":\"75-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/hgtb.2017.250\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Gene Therapy Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/hgtb.2017.250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2017.250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 7

摘要

重组腺相关病毒(Recombinant adeno-associated virus, raav)是主要的体内基因传递平台,在包括中枢神经系统(central nervous system, CNS)在内的多种组织的基因治疗中得到了广泛的研究。单次向脑脊液(CSF)空间注射rAAV已被广泛用于靶向中枢神经系统,但它存在一些缺点,例如渗漏到周围组织。本文描述了一种使用渗透泵将rAAV缓慢注入小鼠CSF空间的方案。与单丸注射技术相比,泵注可导致高中枢神经系统转导和低周围组织转导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slow Infusion of Recombinant Adeno-Associated Viruses into the Mouse Cerebrospinal Fluid Space.

Recombinant adeno-associated viruses (rAAVs) are the leading in vivo gene delivery platform, and have been extensively studied in gene therapy targeting various tissues, including the central nervous system (CNS). A single-bolus rAAV injection to the cerebrospinal fluid (CSF) space has been widely used to target the CNS, but it suffers from several drawbacks, such as leakage to peripheral tissues. Here, a protocol is described using an osmotic pump to infuse rAAV slowly into the mouse CSF space. Compared to the single-bolus injection technique, pump infusion can lead to higher CNS transduction and lower transduction in the peripheral tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Gene Therapy Methods
Human Gene Therapy Methods BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases. The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.
期刊最新文献
Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations. Fast-Seq: A Simple Method for Rapid and Inexpensive Validation of Packaged Single-Stranded Adeno-Associated Viral Genomes in Academic Settings. LINC00958 Accelerates Cell Proliferation and Migration in Non-Small Cell Lung Cancer Through JNK/c-JUN Signaling. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. LINC00958 accelerates cell proliferation and migration in non-small cell lung cancer through JNK/c-JUN signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1