Estefanía Sánchez-Vásquez, Nagif Alata Jimenez, Nicolás A. Vázquez, Pablo H. Strobl-Mazzulla
{"title":"动态RNA修饰在动物发育中的新作用","authors":"Estefanía Sánchez-Vásquez, Nagif Alata Jimenez, Nicolás A. Vázquez, Pablo H. Strobl-Mazzulla","doi":"10.1016/j.mod.2018.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The central dogma of molecular biology statically says that the information flows from DNA to messenger RNA to protein. But the recent advances in mass spectrometry and high throughput technology have helped the scientists to view RNA as little more than a courier of genetic information encoded in the DNA. The dynamics of RNA modifications in coding and non-coding RNAs are just emerging as a carrier of non-genetic information, uncovering a new layer of complexity in the regulation of gene expression and protein translation. In this review, we summarize about the current knowledge of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine (Ψ) modifications in RNA, and described how these RNA modifications are implicated in early animal development and in several human diseases.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"154 ","pages":"Pages 24-32"},"PeriodicalIF":2.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.04.002","citationCount":"30","resultStr":"{\"title\":\"Emerging role of dynamic RNA modifications during animal development\",\"authors\":\"Estefanía Sánchez-Vásquez, Nagif Alata Jimenez, Nicolás A. Vázquez, Pablo H. Strobl-Mazzulla\",\"doi\":\"10.1016/j.mod.2018.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The central dogma of molecular biology statically says that the information flows from DNA to messenger RNA to protein. But the recent advances in mass spectrometry and high throughput technology have helped the scientists to view RNA as little more than a courier of genetic information encoded in the DNA. The dynamics of RNA modifications in coding and non-coding RNAs are just emerging as a carrier of non-genetic information, uncovering a new layer of complexity in the regulation of gene expression and protein translation. In this review, we summarize about the current knowledge of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine (Ψ) modifications in RNA, and described how these RNA modifications are implicated in early animal development and in several human diseases.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"154 \",\"pages\":\"Pages 24-32\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2018.04.002\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477318300054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Emerging role of dynamic RNA modifications during animal development
The central dogma of molecular biology statically says that the information flows from DNA to messenger RNA to protein. But the recent advances in mass spectrometry and high throughput technology have helped the scientists to view RNA as little more than a courier of genetic information encoded in the DNA. The dynamics of RNA modifications in coding and non-coding RNAs are just emerging as a carrier of non-genetic information, uncovering a new layer of complexity in the regulation of gene expression and protein translation. In this review, we summarize about the current knowledge of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine (Ψ) modifications in RNA, and described how these RNA modifications are implicated in early animal development and in several human diseases.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.