{"title":"运动诱导的自噬上调和细胞凋亡抑制与药物诱导的帕金森病神经保护的关系","authors":"Yong Chul Jang, Dong Joo Hwang, Jung Hoon Koo, Hyun Seob Um, Nam Hee Lee, Dong Cheol Yeom, Youngil Lee, Joon Yong Cho","doi":"10.20463/jenb.2018.0001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We investigated whether treadmill exercise (TE)-induced neuroprotection was associated with enhanced autophagy and reduced apoptosis in a mouse model of pharmacologically induced Parkinson's disease (PD).</p><p><strong>Methods: </strong>PD was induced via the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). C57BL/6 male mice were randomly assigned to the following three groups: control (C57BL, n=10), MPTP with probenecid (MPTP/C, n=10), and MPTP/ C plus exercise (MPTP-TE, n=10). The MPTP-TE mice performed TE training (10 m/min, 60 min/day, 5 days/week) for 8 weeks. The rotarod test was used to assess motor function.</p><p><strong>Results: </strong>TE restored MPTP/P-induced motor dysfunctionand increased tyrosine hydroxylase levels. Furthermore, TE diminished the levels of α-synuclein (α-syn), a neurotoxin; modulated the levels of autophagy-associated proteins, including microtubule-associated protein 1 light chain 3-II, p62, BECLIN1, BNIP3, and lysosomal-associated membrane protein-2, which enhanced autophagy; inhibited the activation of proapoptotic proteins (caspase-3 and BAX);and upregulated BCL-2, an antiapoptosis protein.</p><p><strong>Conclusion: </strong>Taken together, these results suggested that the TE-induced neuroprotection against MPTP-induced cell death was associated with enhanced autophagy and neuronal regeneration based on the findings of inhibited proapoptotic events in the brains of the TE-trained animals.</p>","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"22 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909076/pdf/","citationCount":"27","resultStr":"{\"title\":\"Association of exercise-induced autophagy upregulation and apoptosis suppression with neuroprotection against pharmacologically induced Parkinson's disease.\",\"authors\":\"Yong Chul Jang, Dong Joo Hwang, Jung Hoon Koo, Hyun Seob Um, Nam Hee Lee, Dong Cheol Yeom, Youngil Lee, Joon Yong Cho\",\"doi\":\"10.20463/jenb.2018.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We investigated whether treadmill exercise (TE)-induced neuroprotection was associated with enhanced autophagy and reduced apoptosis in a mouse model of pharmacologically induced Parkinson's disease (PD).</p><p><strong>Methods: </strong>PD was induced via the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). C57BL/6 male mice were randomly assigned to the following three groups: control (C57BL, n=10), MPTP with probenecid (MPTP/C, n=10), and MPTP/ C plus exercise (MPTP-TE, n=10). The MPTP-TE mice performed TE training (10 m/min, 60 min/day, 5 days/week) for 8 weeks. The rotarod test was used to assess motor function.</p><p><strong>Results: </strong>TE restored MPTP/P-induced motor dysfunctionand increased tyrosine hydroxylase levels. Furthermore, TE diminished the levels of α-synuclein (α-syn), a neurotoxin; modulated the levels of autophagy-associated proteins, including microtubule-associated protein 1 light chain 3-II, p62, BECLIN1, BNIP3, and lysosomal-associated membrane protein-2, which enhanced autophagy; inhibited the activation of proapoptotic proteins (caspase-3 and BAX);and upregulated BCL-2, an antiapoptosis protein.</p><p><strong>Conclusion: </strong>Taken together, these results suggested that the TE-induced neuroprotection against MPTP-induced cell death was associated with enhanced autophagy and neuronal regeneration based on the findings of inhibited proapoptotic events in the brains of the TE-trained animals.</p>\",\"PeriodicalId\":15795,\"journal\":{\"name\":\"Journal of Exercise Nutrition & Biochemistry\",\"volume\":\"22 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909076/pdf/\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Exercise Nutrition & Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20463/jenb.2018.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Exercise Nutrition & Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20463/jenb.2018.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Association of exercise-induced autophagy upregulation and apoptosis suppression with neuroprotection against pharmacologically induced Parkinson's disease.
Purpose: We investigated whether treadmill exercise (TE)-induced neuroprotection was associated with enhanced autophagy and reduced apoptosis in a mouse model of pharmacologically induced Parkinson's disease (PD).
Methods: PD was induced via the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). C57BL/6 male mice were randomly assigned to the following three groups: control (C57BL, n=10), MPTP with probenecid (MPTP/C, n=10), and MPTP/ C plus exercise (MPTP-TE, n=10). The MPTP-TE mice performed TE training (10 m/min, 60 min/day, 5 days/week) for 8 weeks. The rotarod test was used to assess motor function.
Results: TE restored MPTP/P-induced motor dysfunctionand increased tyrosine hydroxylase levels. Furthermore, TE diminished the levels of α-synuclein (α-syn), a neurotoxin; modulated the levels of autophagy-associated proteins, including microtubule-associated protein 1 light chain 3-II, p62, BECLIN1, BNIP3, and lysosomal-associated membrane protein-2, which enhanced autophagy; inhibited the activation of proapoptotic proteins (caspase-3 and BAX);and upregulated BCL-2, an antiapoptosis protein.
Conclusion: Taken together, these results suggested that the TE-induced neuroprotection against MPTP-induced cell death was associated with enhanced autophagy and neuronal regeneration based on the findings of inhibited proapoptotic events in the brains of the TE-trained animals.