Nan Chen, Sai He, Jie Geng, Zhang-Jun Song, Pi-Hua Han, Juan Qin, Zheng Zhao, Yong-Chun Song, Hu-Xia Wang, Cheng-Xue Dang
{"title":"Contactin 1的过表达促进Hs578T乳腺癌细胞的生长、迁移和侵袭。","authors":"Nan Chen, Sai He, Jie Geng, Zhang-Jun Song, Pi-Hua Han, Juan Qin, Zheng Zhao, Yong-Chun Song, Hu-Xia Wang, Cheng-Xue Dang","doi":"10.1186/s12860-018-0154-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Contactin1 (CNTN1) has been shown to play an important role in the invasion and metastasis of several tumors; however, the role of CNTN1 in breast cancer has not been fully studied. The purpose of this study is to investigate the role of CNTN1 in regulating tumor growth, migration and invasion in breast cancer.</p><p><strong>Results: </strong>To investigate its function, CNTN1 was expressed in Hs578T cells. CNTN1 expression was confirmed by western blot, immunohistochemistry and real-time RT-PCR. The effect of CNTN1 overexpression on proliferation, migration and invasion of Hs578T breast cancer cells was assessed in vitro and in vivo. Our results showed that CNTN1 overexpression promoted Hs578T cell proliferation, cell cycle progression, colony formation, invasion and migration. Notably, overexpression of CNTN1 in Hs578T cells enhanced the growth of mouse xenograft tumors.</p><p><strong>Conclusions: </strong>CNTN1 promotes growth, metastasis and invasion of Hs578T breast cancer cell line. Thus, therapies targeting CNTN1 may prove efficacious for breast cancer. However, further investigation is required to understand the mechanism by which CNTN1 influences proliferation, metastasis and invasion in breast cancer.</p>","PeriodicalId":9051,"journal":{"name":"BMC Cell Biology","volume":" ","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12860-018-0154-3","citationCount":"15","resultStr":"{\"title\":\"Overexpression of Contactin 1 promotes growth, migration and invasion in Hs578T breast cancer cells.\",\"authors\":\"Nan Chen, Sai He, Jie Geng, Zhang-Jun Song, Pi-Hua Han, Juan Qin, Zheng Zhao, Yong-Chun Song, Hu-Xia Wang, Cheng-Xue Dang\",\"doi\":\"10.1186/s12860-018-0154-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Contactin1 (CNTN1) has been shown to play an important role in the invasion and metastasis of several tumors; however, the role of CNTN1 in breast cancer has not been fully studied. The purpose of this study is to investigate the role of CNTN1 in regulating tumor growth, migration and invasion in breast cancer.</p><p><strong>Results: </strong>To investigate its function, CNTN1 was expressed in Hs578T cells. CNTN1 expression was confirmed by western blot, immunohistochemistry and real-time RT-PCR. The effect of CNTN1 overexpression on proliferation, migration and invasion of Hs578T breast cancer cells was assessed in vitro and in vivo. Our results showed that CNTN1 overexpression promoted Hs578T cell proliferation, cell cycle progression, colony formation, invasion and migration. Notably, overexpression of CNTN1 in Hs578T cells enhanced the growth of mouse xenograft tumors.</p><p><strong>Conclusions: </strong>CNTN1 promotes growth, metastasis and invasion of Hs578T breast cancer cell line. Thus, therapies targeting CNTN1 may prove efficacious for breast cancer. However, further investigation is required to understand the mechanism by which CNTN1 influences proliferation, metastasis and invasion in breast cancer.</p>\",\"PeriodicalId\":9051,\"journal\":{\"name\":\"BMC Cell Biology\",\"volume\":\" \",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12860-018-0154-3\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12860-018-0154-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12860-018-0154-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Overexpression of Contactin 1 promotes growth, migration and invasion in Hs578T breast cancer cells.
Background: Contactin1 (CNTN1) has been shown to play an important role in the invasion and metastasis of several tumors; however, the role of CNTN1 in breast cancer has not been fully studied. The purpose of this study is to investigate the role of CNTN1 in regulating tumor growth, migration and invasion in breast cancer.
Results: To investigate its function, CNTN1 was expressed in Hs578T cells. CNTN1 expression was confirmed by western blot, immunohistochemistry and real-time RT-PCR. The effect of CNTN1 overexpression on proliferation, migration and invasion of Hs578T breast cancer cells was assessed in vitro and in vivo. Our results showed that CNTN1 overexpression promoted Hs578T cell proliferation, cell cycle progression, colony formation, invasion and migration. Notably, overexpression of CNTN1 in Hs578T cells enhanced the growth of mouse xenograft tumors.
Conclusions: CNTN1 promotes growth, metastasis and invasion of Hs578T breast cancer cell line. Thus, therapies targeting CNTN1 may prove efficacious for breast cancer. However, further investigation is required to understand the mechanism by which CNTN1 influences proliferation, metastasis and invasion in breast cancer.
期刊介绍:
BMC Molecular and Cell Biology, formerly known as BMC Cell Biology, is an open access journal that considers articles on all aspects of both eukaryotic and prokaryotic cell and molecular biology, including structural and functional cell biology, DNA and RNA in a cellular context and biochemistry, as well as research using both the experimental and theoretical aspects of physics to study biological processes and investigations into the structure of biological macromolecules.