药物发现中的大数据。

Q1 Pharmacology, Toxicology and Pharmaceutics Progress in medicinal chemistry Pub Date : 2018-01-01 Epub Date: 2018-02-24 DOI:10.1016/bs.pmch.2017.12.003
Nathan Brown, Jean Cambruzzi, Peter J Cox, Mark Davies, James Dunbar, Dean Plumbley, Matthew A Sellwood, Aaron Sim, Bryn I Williams-Jones, Magdalena Zwierzyna, David W Sheppard
{"title":"药物发现中的大数据。","authors":"Nathan Brown,&nbsp;Jean Cambruzzi,&nbsp;Peter J Cox,&nbsp;Mark Davies,&nbsp;James Dunbar,&nbsp;Dean Plumbley,&nbsp;Matthew A Sellwood,&nbsp;Aaron Sim,&nbsp;Bryn I Williams-Jones,&nbsp;Magdalena Zwierzyna,&nbsp;David W Sheppard","doi":"10.1016/bs.pmch.2017.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>Interpretation of Big Data in the drug discovery community should enhance project timelines and reduce clinical attrition through improved early decision making. The issues we encounter start with the sheer volume of data and how we first ingest it before building an infrastructure to house it to make use of the data in an efficient and productive way. There are many problems associated with the data itself including general reproducibility, but often, it is the context surrounding an experiment that is critical to success. Help, in the form of artificial intelligence (AI), is required to understand and translate the context. On the back of natural language processing pipelines, AI is also used to prospectively generate new hypotheses by linking data together. We explain Big Data from the context of biology, chemistry and clinical trials, showcasing some of the impressive public domain sources and initiatives now available for interrogation.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.pmch.2017.12.003","citationCount":"33","resultStr":"{\"title\":\"Big Data in Drug Discovery.\",\"authors\":\"Nathan Brown,&nbsp;Jean Cambruzzi,&nbsp;Peter J Cox,&nbsp;Mark Davies,&nbsp;James Dunbar,&nbsp;Dean Plumbley,&nbsp;Matthew A Sellwood,&nbsp;Aaron Sim,&nbsp;Bryn I Williams-Jones,&nbsp;Magdalena Zwierzyna,&nbsp;David W Sheppard\",\"doi\":\"10.1016/bs.pmch.2017.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interpretation of Big Data in the drug discovery community should enhance project timelines and reduce clinical attrition through improved early decision making. The issues we encounter start with the sheer volume of data and how we first ingest it before building an infrastructure to house it to make use of the data in an efficient and productive way. There are many problems associated with the data itself including general reproducibility, but often, it is the context surrounding an experiment that is critical to success. Help, in the form of artificial intelligence (AI), is required to understand and translate the context. On the back of natural language processing pipelines, AI is also used to prospectively generate new hypotheses by linking data together. We explain Big Data from the context of biology, chemistry and clinical trials, showcasing some of the impressive public domain sources and initiatives now available for interrogation.</p>\",\"PeriodicalId\":20755,\"journal\":{\"name\":\"Progress in medicinal chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.pmch.2017.12.003\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in medicinal chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmch.2017.12.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.pmch.2017.12.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 33

摘要

在药物发现领域,大数据的解释应该通过改进早期决策来缩短项目时间,减少临床损耗。我们遇到的问题始于庞大的数据量,以及在构建存储数据的基础设施之前如何首先摄取数据,以便以高效和富有成效的方式使用数据。数据本身有许多问题,包括一般的可重复性,但通常情况下,实验成功的关键是周围的环境。需要人工智能(AI)形式的帮助来理解和翻译上下文。在自然语言处理管道的背后,人工智能也被用于通过将数据连接在一起来前瞻性地生成新的假设。我们从生物学、化学和临床试验的角度来解释大数据,展示了一些令人印象深刻的公共领域来源和倡议,现在可以用于审讯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big Data in Drug Discovery.

Interpretation of Big Data in the drug discovery community should enhance project timelines and reduce clinical attrition through improved early decision making. The issues we encounter start with the sheer volume of data and how we first ingest it before building an infrastructure to house it to make use of the data in an efficient and productive way. There are many problems associated with the data itself including general reproducibility, but often, it is the context surrounding an experiment that is critical to success. Help, in the form of artificial intelligence (AI), is required to understand and translate the context. On the back of natural language processing pipelines, AI is also used to prospectively generate new hypotheses by linking data together. We explain Big Data from the context of biology, chemistry and clinical trials, showcasing some of the impressive public domain sources and initiatives now available for interrogation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in medicinal chemistry
Progress in medicinal chemistry Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
15.60
自引率
0.00%
发文量
6
期刊介绍: This series has a long established reputation for excellent coverage of almost every facet of Medicinal Chemistry and is one of the most respected and instructive sources of information on the subject. The latest volume certifies to the continuing success of a unique series reflecting current progress in a broadly developing field of science.
期刊最新文献
Another decade of antimalarial drug discovery: New targets, tools and molecules. Harnessing conformational drivers in drug design. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. Antibody drug conjugates beyond cytotoxic payloads. Biophysical screening and characterisation in medicinal chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1