基于时间结构自动学习预测模型的纵向基因型-表型关联研究。

Xiaoqian Wang, Jingwen Yan, Xiaohui Yao, Sungeun Kim, Kwangsik Nho, Shannon L Risacher, Andrew J Saykin, Li Shen, Heng Huang
{"title":"基于时间结构自动学习预测模型的纵向基因型-表型关联研究。","authors":"Xiaoqian Wang, Jingwen Yan, Xiaohui Yao, Sungeun Kim, Kwangsik Nho, Shannon L Risacher, Andrew J Saykin, Li Shen, Heng Huang","doi":"10.1007/978-3-319-56970-3_18","DOIUrl":null,"url":null,"abstract":"<p><p>With rapid progress in high-throughput genotyping and neuroimaging, imaging genetics has gained significant attention in the research of complex brain disorders, such as Alzheimer's Disease (AD). The genotype-phenotype association study using imaging genetic data has the potential to reveal genetic basis and biological mechanism of brain structure and function. AD is a progressive neurodegenerative disease, thus, it is crucial to look into the relations between SNPs and longitudinal variations of neuroimaging phenotypes. Although some machine learning models were newly presented to capture the longitudinal patterns in genotype-phenotype association study, most of them required fixed longitudinal structures of prediction tasks and could not automatically learn the interrelations among longitudinal prediction tasks. To address this challenge, we proposed a novel temporal structure auto-learning model to automatically uncover longitudinal genotype-phenotype interrelations and utilized such interrelated structures to enhance phenotype prediction in the meantime. We conducted longitudinal phenotype prediction experiments on the ADNI cohort including 3,123 SNPs and 2 types of biomarkers, VBM and FreeSurfer. Empirical results demonstrated advantages of our proposed model over the counterparts. Moreover, available literature was identified for our top selected SNPs, which demonstrated the rationality of our prediction results. An executable program is available online at https://github.com/littleq1991/sparse_lowRank_regression.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"10229 ","pages":"287-302"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_18","citationCount":"11","resultStr":"{\"title\":\"Longitudinal Genotype-Phenotype Association Study via Temporal Structure Auto-Learning Predictive Model.\",\"authors\":\"Xiaoqian Wang, Jingwen Yan, Xiaohui Yao, Sungeun Kim, Kwangsik Nho, Shannon L Risacher, Andrew J Saykin, Li Shen, Heng Huang\",\"doi\":\"10.1007/978-3-319-56970-3_18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With rapid progress in high-throughput genotyping and neuroimaging, imaging genetics has gained significant attention in the research of complex brain disorders, such as Alzheimer's Disease (AD). The genotype-phenotype association study using imaging genetic data has the potential to reveal genetic basis and biological mechanism of brain structure and function. AD is a progressive neurodegenerative disease, thus, it is crucial to look into the relations between SNPs and longitudinal variations of neuroimaging phenotypes. Although some machine learning models were newly presented to capture the longitudinal patterns in genotype-phenotype association study, most of them required fixed longitudinal structures of prediction tasks and could not automatically learn the interrelations among longitudinal prediction tasks. To address this challenge, we proposed a novel temporal structure auto-learning model to automatically uncover longitudinal genotype-phenotype interrelations and utilized such interrelated structures to enhance phenotype prediction in the meantime. We conducted longitudinal phenotype prediction experiments on the ADNI cohort including 3,123 SNPs and 2 types of biomarkers, VBM and FreeSurfer. Empirical results demonstrated advantages of our proposed model over the counterparts. Moreover, available literature was identified for our top selected SNPs, which demonstrated the rationality of our prediction results. An executable program is available online at https://github.com/littleq1991/sparse_lowRank_regression.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"10229 \",\"pages\":\"287-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_18\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-56970-3_18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-56970-3_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着高通量基因分型和神经影像学的快速发展,成像遗传学在阿尔茨海默病(AD)等复杂脑部疾病的研究中受到了极大的关注。利用影像学遗传数据进行基因型-表型关联研究,有可能揭示大脑结构和功能的遗传基础和生物学机制。AD是一种进行性神经退行性疾病,因此,研究snp与神经影像学表型纵向变异的关系至关重要。虽然近年来出现了一些机器学习模型来捕捉基因型-表型关联研究中的纵向模式,但大多数模型都需要固定的预测任务的纵向结构,不能自动学习纵向预测任务之间的相互关系。为了解决这一挑战,我们提出了一种新的时间结构自动学习模型来自动揭示纵向基因型-表型相互关系,并利用这些相互关联的结构来增强表型预测。我们对ADNI队列进行了纵向表型预测实验,包括3123个snp和2种生物标志物,VBM和FreeSurfer。实证结果表明,我们提出的模型优于同类模型。此外,对我们选择的最佳snp进行了现有文献鉴定,这证明了我们预测结果的合理性。可执行程序可在https://github.com/littleq1991/sparse_lowRank_regression上在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal Genotype-Phenotype Association Study via Temporal Structure Auto-Learning Predictive Model.

With rapid progress in high-throughput genotyping and neuroimaging, imaging genetics has gained significant attention in the research of complex brain disorders, such as Alzheimer's Disease (AD). The genotype-phenotype association study using imaging genetic data has the potential to reveal genetic basis and biological mechanism of brain structure and function. AD is a progressive neurodegenerative disease, thus, it is crucial to look into the relations between SNPs and longitudinal variations of neuroimaging phenotypes. Although some machine learning models were newly presented to capture the longitudinal patterns in genotype-phenotype association study, most of them required fixed longitudinal structures of prediction tasks and could not automatically learn the interrelations among longitudinal prediction tasks. To address this challenge, we proposed a novel temporal structure auto-learning model to automatically uncover longitudinal genotype-phenotype interrelations and utilized such interrelated structures to enhance phenotype prediction in the meantime. We conducted longitudinal phenotype prediction experiments on the ADNI cohort including 3,123 SNPs and 2 types of biomarkers, VBM and FreeSurfer. Empirical results demonstrated advantages of our proposed model over the counterparts. Moreover, available literature was identified for our top selected SNPs, which demonstrated the rationality of our prediction results. An executable program is available online at https://github.com/littleq1991/sparse_lowRank_regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1